Suppr超能文献

深入思考纤维束成像游戏:用于纤维束成像计算与分析的深度学习。

Think deep in the tractography game: deep learning for tractography computing and analysis.

作者信息

Zhang Fan, Théberge Antoine, Jodoin Pierre-Marc, Descoteaux Maxime, O'Donnell Lauren J

机构信息

University of Electronic Science and Technology of China, Chengdu, China.

Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, QC, Canada.

出版信息

Brain Struct Funct. 2025 Jun 16;230(6):100. doi: 10.1007/s00429-025-02938-0.

Abstract

Tractography is a challenging process with complex rules, driving continuous algorithmic evolution to address its challenges. Meanwhile, deep learning has tackled similarly difficult tasks, such as mastering the Go board game and animating sophisticated robots. Given its transformative impact in these areas, deep learning has the potential to revolutionize tractography within the framework of existing rules. This work provides a brief summary of recent advances and challenges in deep learning-based tractography computing and analysis.

摘要

纤维束成像技术是一个具有复杂规则的挑战性过程,推动着算法不断演进以应对其挑战。与此同时,深度学习已经攻克了类似的难题,比如掌握围棋游戏和操控复杂的机器人。鉴于其在这些领域的变革性影响,深度学习有潜力在现有规则框架内彻底改变纤维束成像技术。本文简要总结了基于深度学习的纤维束成像计算与分析的最新进展和挑战。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验