Suppr超能文献

边界纤维束冗余。

Bounding tractogram redundancy.

作者信息

Persson Sanna, Moreno Rodrigo

机构信息

Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, Sweden.

MedTechLabs, BioClinicum, Karolinska University Hospital, Solna, Sweden.

出版信息

Front Neurosci. 2024 Jul 23;18:1403804. doi: 10.3389/fnins.2024.1403804. eCollection 2024.

Abstract

INTRODUCTION

In tractography, redundancy poses a significant challenge, often resulting in tractograms that include anatomically implausible streamlines or those that fail to represent the brain's white matter architecture accurately. Current filtering methods aim to refine tractograms by addressing these issues, but they lack a unified measure of redundancy and can be computationally demanding.

METHODS

We propose a novel framework to quantify tractogram redundancy based on filtering tractogram subsets without endorsing a specific filtering algorithm. Our approach defines redundancy based on the anatomical plausibility and diffusion signal representation of streamlines, establishing both lower and upper bounds for the number of false-positive streamlines and the tractogram redundancy.

RESULTS

We applied this framework to tractograms from the Human Connectome Project, using geometrical plausibility and statistical methods informed by the streamlined attributes and ensemble consensus. Our results establish bounds for the tractogram redundancy and the false-discovery rate of the tractograms.

CONCLUSION

This study advances the understanding of tractogram redundancy and supports the refinement of tractography methods. Future research will focus on further validating the proposed framework and exploring tractogram compression possibilities.

摘要

引言

在纤维束成像中,冗余带来了重大挑战,常常导致纤维束图包含解剖学上不合理的流线,或者无法准确呈现大脑白质结构的流线。当前的滤波方法旨在通过解决这些问题来优化纤维束图,但它们缺乏冗余的统一度量,并且计算量可能很大。

方法

我们提出了一种新颖的框架,用于在不支持特定滤波算法的情况下,通过对纤维束图子集进行滤波来量化纤维束图冗余。我们的方法基于流线的解剖学合理性和扩散信号表示来定义冗余,为假阳性流线的数量和纤维束图冗余建立了下限和上限。

结果

我们将此框架应用于人类连接组计划的纤维束图,使用基于流线属性和总体一致性的几何合理性和统计方法。我们的结果确定了纤维束图冗余的界限以及纤维束图的错误发现率。

结论

本研究推进了对纤维束图冗余的理解,并支持纤维束成像方法的优化。未来的研究将集中于进一步验证所提出的框架,并探索纤维束图压缩的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb06/11302046/0a12a6f56c93/fnins-18-1403804-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验