Lin Xiu, Zhang Shi-Nan, Xu Dong, Zhang Jun-Jun, Lin Yun-Xiao, Zhai Guang-Yao, Su Hui, Xue Zhong-Hua, Liu Xi, Antonietti Markus, Chen Jie-Sheng, Li Xin-Hao
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Wissenschaftspark Golm, Potsdam, Germany.
Nat Commun. 2021 Jun 23;12(1):3882. doi: 10.1038/s41467-021-24203-8.
The activation of C-H bonds is a central challenge in organic chemistry and usually a key step for the retro-synthesis of functional natural products due to the high chemical stability of C-H bonds. Electrochemical methods are a powerful alternative for C-H activation, but this approach usually requires high overpotential and homogeneous mediators. Here, we design electron-deficient WC nanocrystal-based electrodes to boost the heterogeneous activation of C-H bonds under mild conditions via an additive-free, purely heterogeneous electrocatalytic strategy. The electron density of WC nanocrystals is tuned by constructing Schottky heterojunctions with nitrogen-doped carbon support to facilitate the preadsorption and activation of benzylic C-H bonds of ethylbenzene on the WC surface, enabling a high turnover frequency (18.8 h) at a comparably low work potential (2 V versus SCE). The pronounced electron deficiency of the WC nanocatalysts substantially facilitates the direct deprotonation process to ensure electrode durability without self-oxidation. The efficient oxidation process also boosts the balancing hydrogen production from as-formed protons on the cathode by a factor of 10 compared to an inert reference electrode. The whole process meets the requirements of atomic economy and electric energy utilization in terms of sustainable chemical synthesis.
碳氢键的活化是有机化学中的核心挑战,由于碳氢键具有较高的化学稳定性,它通常也是功能性天然产物逆合成的关键步骤。电化学方法是碳氢键活化的一种有效替代方法,但这种方法通常需要高过电位和均相介质。在此,我们设计了基于缺电子碳化钨纳米晶体的电极,通过无添加剂的纯非均相电催化策略,在温和条件下促进碳氢键的非均相活化。通过与氮掺杂碳载体构建肖特基异质结来调节碳化钨纳米晶体的电子密度,以促进乙苯苄基碳氢键在碳化钨表面的预吸附和活化,从而在相对较低的工作电位(相对于饱和甘汞电极2V)下实现高周转频率(18.8 h⁻¹)。碳化钨纳米催化剂明显的缺电子特性极大地促进了直接去质子化过程,确保电极耐久性且无自氧化现象。与惰性参比电极相比,高效的氧化过程还使阴极上由生成的质子产生的析氢量增加了10倍。就可持续化学合成而言,整个过程满足原子经济性和电能利用的要求。