The Global Tuberculosis Program, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Immigrant and Global Health, Baylor College of Medicine, Houston, TX, United States.
Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States.
Front Immunol. 2021 Jun 7;12:688132. doi: 10.3389/fimmu.2021.688132. eCollection 2021.
The immune response must balance the pro-inflammatory, cell-mediated cytotoxicity with the anti-inflammatory and wound repair response. Epigenetic mechanisms mediate this balance and limit host immunity from inducing exuberant collateral damage to host tissue after severe and chronic infections. However, following treatment for these infections, including sepsis, pneumonia, hepatitis B, hepatitis C, HIV, tuberculosis (TB) or schistosomiasis, detrimental epigenetic scars persist, and result in long-lasting immune suppression. This is hypothesized to be one of the contributing mechanisms explaining why survivors of infection have increased all-cause mortality and increased rates of unrelated secondary infections. The mechanisms that induce epigenetic-mediated immune suppression have been demonstrated and in animal models. Modulation of the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR), nuclear factor of activated T cells (NFAT) or nuclear receptor (NR4A) pathways is able to block or reverse the development of detrimental epigenetic scars. Similarly, drugs that directly modify epigenetic enzymes, such as those that inhibit histone deacetylases (HDAC) inhibitors, DNA hypomethylating agents or modifiers of the Nucleosome Remodeling and DNA methylation (NuRD) complex or Polycomb Repressive Complex (PRC) have demonstrated capacity to restore host immunity in the setting of cancer-, LCMV- or murine sepsis-induced epigenetic-mediated immune suppression. A third clinically feasible strategy for reversing detrimental epigenetic scars includes bioengineering approaches to either directly reverse the detrimental epigenetic marks or to modify the epigenetic enzymes or transcription factors that induce detrimental epigenetic scars. Each of these approaches, alone or in combination, have ablated or reversed detrimental epigenetic marks in or in animal models; translational studies are now required to evaluate clinical applicability.
免疫反应必须平衡促炎、细胞介导的细胞毒性与抗炎和伤口修复反应。表观遗传机制介导这种平衡,并限制宿主免疫在严重和慢性感染后对宿主组织产生过度的附带损伤。然而,在这些感染(包括败血症、肺炎、乙型肝炎、丙型肝炎、艾滋病毒、结核病或血吸虫病)的治疗后,有害的表观遗传痕迹仍然存在,并导致持久的免疫抑制。这被假设是感染幸存者全因死亡率增加和无关继发性感染率增加的原因之一。在动物模型中已经证明了诱导表观遗传介导免疫抑制的机制。调节 AMP 激活的蛋白激酶 (AMPK)-哺乳动物雷帕霉素靶蛋白 (mTOR)、激活的 T 细胞核因子 (NFAT)或核受体 (NR4A) 途径能够阻断或逆转有害表观遗传痕迹的发展。同样,直接修饰表观遗传酶的药物,如那些抑制组蛋白去乙酰化酶 (HDAC)抑制剂、DNA 低甲基化剂或核小体重塑和 DNA 甲基化 (NuRD) 复合物或多梳抑制复合物 (PRC)调节剂的药物,已经证明能够在癌症、LCMV 或鼠败血症诱导的表观遗传介导免疫抑制的情况下恢复宿主免疫。第三种临床可行的逆转有害表观遗传痕迹的策略包括生物工程方法,要么直接逆转有害的表观遗传标记,要么修饰诱导有害表观遗传痕迹的表观遗传酶或转录因子。这些方法中的每一种方法,单独或组合使用,都已经在体内或动物模型中消除或逆转了有害的表观遗传标记;现在需要进行转化研究来评估临床适用性。