Han Pei, Li Wei, Yang Jin, Shang Ching, Lin Chiou-Hong, Cheng Wei, Hang Calvin T, Cheng Hsiu-Ling, Chen Chen-Hao, Wong Johnson, Xiong Yiqin, Zhao Mingming, Drakos Stavros G, Ghetti Andrea, Li Dean Y, Bernstein Daniel, Chen Huei-Sheng Vincent, Quertermous Thomas, Chang Ching-Pin
Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA.
Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
Biochim Biophys Acta. 2016 Jul;1863(7 Pt B):1772-81. doi: 10.1016/j.bbamcr.2016.03.002. Epub 2016 Mar 4.
Chromatin structure is determined by nucleosome positioning, histone modifications, and DNA methylation. How chromatin modifications are coordinately altered under pathological conditions remains elusive. Here we describe a stress-activated mechanism of concerted chromatin modification in the heart. In mice, pathological stress activates cardiomyocytes to express Brg1 (nucleosome-remodeling factor), G9a/Glp (histone methyltransferase), and Dnmt3 (DNA methyltransferase). Once activated, Brg1 recruits G9a and then Dnmt3 to sequentially assemble repressive chromatin-marked by H3K9 and CpG methylation-on a key molecular motor gene (Myh6), thereby silencing Myh6 and impairing cardiac contraction. Disruption of Brg1, G9a or Dnmt3 erases repressive chromatin marks and de-represses Myh6, reducing stress-induced cardiac dysfunction. In human hypertrophic hearts, BRG1-G9a/GLP-DNMT3 complex is also activated; its level correlates with H3K9/CpG methylation, Myh6 repression, and cardiomyopathy. Our studies demonstrate a new mechanism of chromatin assembly in stressed hearts and novel therapeutic targets for restoring Myh6 and ventricular function. The stress-induced Brg1-G9a-Dnmt3 interactions and sequence of repressive chromatin assembly on Myh6 illustrates a molecular mechanism by which the heart epigenetically responds to environmental signals. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
染色质结构由核小体定位、组蛋白修饰和DNA甲基化决定。在病理条件下,染色质修饰如何协同改变仍不清楚。在此,我们描述了心脏中一种应激激活的协同染色质修饰机制。在小鼠中,病理应激激活心肌细胞表达Brg1(核小体重塑因子)、G9a/Glp(组蛋白甲基转移酶)和Dnmt3(DNA甲基转移酶)。一旦被激活,Brg1招募G9a,然后招募Dnmt3,在一个关键分子运动基因(Myh6)上依次组装以H3K9和CpG甲基化为标记的抑制性染色质,从而使Myh6沉默并损害心脏收缩功能。破坏Brg1、G9a或Dnmt3可消除抑制性染色质标记并使Myh6去抑制,减轻应激诱导的心脏功能障碍。在人类肥厚性心脏中,BRG1 - G9a/GLP - DNMT3复合物也被激活;其水平与H3K9/CpG甲基化、Myh6抑制和心肌病相关。我们的研究揭示了应激心脏中染色质组装的新机制以及恢复Myh6和心室功能的新治疗靶点。应激诱导的Brg1 - G9a - Dnmt3相互作用以及Myh6上抑制性染色质组装的顺序阐明了心脏对环境信号进行表观遗传应答的分子机制。本文是名为:心肌细胞生物学:心脏发育与环境信号整合的特刊的一部分,由Marcus Schaub和Hughes Abriel编辑。