Suppr超能文献

大环d-/l-肽的靶向模板设计:PD-1类药物抑制剂的发现

Target-templated design of macrocyclic d-/l-peptides: discovery of drug-like inhibitors of PD-1.

作者信息

Guardiola Salvador, Varese Monica, Roig Xavier, Sánchez-Navarro Macarena, García Jesús, Giralt Ernest

机构信息

Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain

Department of Molecular Biology, Instituto de Parasitología y Biomedicina, CSIC Granada Spain.

出版信息

Chem Sci. 2021 Mar 2;12(14):5164-5170. doi: 10.1039/d1sc01031j.

Abstract

Peptides are a rapidly growing class of therapeutics with various advantages over traditional small molecules, especially for targeting difficult protein-protein interactions. However, current structure-based methods are largely limited to natural peptides and are not suitable for designing bioactive cyclic topologies that go beyond natural l-amino acids. Here, we report a generalizable framework that exploits the computational power of Rosetta, in terms of large-scale backbone sampling, side-chain composition and energy scoring, to design heterochiral cyclic peptides that bind to a protein surface of interest. To showcase the applicability of our approach, we developed two new inhibitors ( and ) of programmed cell death 1 (PD-1), a key immune checkpoint in oncology. A comprehensive biophysical evaluation was performed to assess their binding to PD-1 as well as their blocking effect on the endogenous PD-1/PD-L1 interaction. Finally, NMR elucidation of their in-solution structures confirmed our design approach.

摘要

肽是一类快速发展的治疗药物,与传统小分子相比具有多种优势,尤其在靶向难以捉摸的蛋白质 - 蛋白质相互作用方面。然而,当前基于结构的方法在很大程度上局限于天然肽,不适用于设计超越天然L - 氨基酸的生物活性环状拓扑结构。在此,我们报告了一个通用框架,该框架利用Rosetta在大规模主链采样、侧链组成和能量评分方面的计算能力,来设计与感兴趣的蛋白质表面结合的异手性环状肽。为了展示我们方法的适用性,我们开发了两种新的程序性细胞死亡蛋白1(PD - 1)抑制剂(和),PD - 1是肿瘤学中的一个关键免疫检查点。进行了全面的生物物理评估,以评估它们与PD - 1的结合以及它们对内源性PD - 1/PD - L1相互作用的阻断作用。最后,通过核磁共振对它们的溶液结构进行解析,证实了我们的设计方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ed6/8179567/f05edc9ef58e/d1sc01031j-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验