Maisuls Iván, Wang Cui, Gutierrez Suburu Matias E, Wilde Sebastian, Daniliuc Constantin-Gabriel, Brünink Dana, Doltsinis Nikos L, Ostendorp Stefan, Wilde Gerhard, Kösters Jutta, Resch-Genger Ute, Strassert Cristian A
Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster Corrensstraße 28/30 D-48149 Münster Germany
CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 D-48149 Münster Germany.
Chem Sci. 2021 Jan 6;12(9):3270-3281. doi: 10.1039/d0sc06126c.
In this work, we describe the synthesis, structural and photophysical characterization of four novel Pd(ii) and Pt(ii) complexes bearing tetradentate luminophoric ligands with high photoluminescence quantum yields ( ) and long excited state lifetimes () at room temperature, where the results were interpreted by means of DFT calculations. Incorporation of fluorine atoms into the tetradentate ligand favors aggregation and thereby, a shortened average distance between the metal centers, which provides accessibility to metal-metal-to-ligand charge-transfer (MMLCT) excimers acting as red-shifted energy traps if compared with the monomeric entities. This supramolecular approach provides an elegant way to enable room-temperature phosphorescence from Pd(ii) complexes, which are otherwise quenched by a thermal population of dissociative states due to a lower ligand field splitting. Encapsulation of these complexes in 100 nm-sized aminated polystyrene nanoparticles enables concentration-controlled aggregation-enhanced dual emission. This phenomenon facilitates the tunability of the absorption and emission colors while providing a rigidified environment supporting an enhanced up to about 80% and extended exceeding 100 μs. Additionally, these nanoarrays constitute rare examples for self-referenced oxygen reporters, since the phosphorescence of the aggregates is insensitive to external influences, whereas the monomeric species drop in luminescence lifetime and intensity with increasing triplet molecular dioxygen concentrations (diffusion-controlled quenching).
在本工作中,我们描述了四种新型钯(II)和铂(II)配合物的合成、结构及光物理特性,这些配合物带有四齿发光配体,在室温下具有高光致发光量子产率( )和长激发态寿命( ),并通过密度泛函理论(DFT)计算对结果进行了解释。将氟原子引入四齿配体有利于聚集,从而缩短金属中心之间的平均距离,与单体实体相比,这使得金属-金属-配体电荷转移(MMLCT)准分子能够作为红移能量陷阱。这种超分子方法提供了一种巧妙的方式,使钯(II)配合物能够实现室温磷光,否则由于较低的配体场分裂,其会因热激发的解离态而猝灭。将这些配合物封装在100纳米大小的胺化聚苯乙烯纳米颗粒中可实现浓度控制的聚集增强型双发射。这种现象有助于调节吸收和发射颜色,同时提供一个刚性环境,使 增强至约80%,并使 延长超过100微秒。此外,这些纳米阵列是自参考氧报告分子的罕见实例,因为聚集体的磷光对外部影响不敏感,而单体物种的发光寿命和强度会随着三重态分子氧浓度的增加而下降(扩散控制猝灭)。