Rivas Aiello Maria Belen, Kirse Thomas M, Lavorato Gabriel C, Maus Bastian, Maisuls Iván, Kuberasivakumaran Shivadharshini, Ostendorp Stefan, Hepp Alexander, Holtkamp Michael, Winkler Elin L, Karst Uwe, Wilde Gerhard, Faber Cornelius, Vericat Carolina, Strassert Cristian A
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) Universidad Nacional de La Plata - CONICET 1900 La Plata Buenos Aires Argentina.
CeNTech, CiMIC, SoN Universität Münster Heisenbergstraße 11 D-48149 Münster Germany.
Small Sci. 2024 Jan 12;4(3):2300145. doi: 10.1002/smsc.202300145. eCollection 2024 Mar.
Two different hybrid nanosystems are prepared by loading highly crystalline, monodisperse magnetite nanocubes (MNCs) with phosphorescent Pt(II) complexes (PtCxs). One involves the encapsulation of the hydrophobic PtCx1 within an amphiphilic comb polymer (MNC@poly(maleic anhydride--1-octadecene) [PMAO]-PtCx1), whereas the other involves the direct binding of the hydrophilic PtCx2 to the surface of the MNC mediated by a ligand-exchange procedure (MNC@OH-PtCx2). Both systems are evaluated as potential candidates for multimodal imaging in magnetic resonance imaging (MRI) and photoluminescence lifetime imaging micro(spectro)scopy (PLIM). PLIM measurements on agarose phantoms demonstrate significantly longer excited-state lifetimes compared to the short-lived autofluorescence of biological background. Additionally, both nanosystems perform as effective MRI contrast agents (CAs): the * values are 3-4 times higher than for the commercial CA ferucarbotran. MNC@PMAO-PtCx1 particles also cause significant increases in . While the ligand exchange procedure efficiently anchors PtCxs to the MNC surface, the polymeric encapsulation ensures higher colloidal stability, contributing to differences in PLIM and MRI outcomes. In these results, the successful integration of two complementary noninvasive imaging modalities within a single nanosystem is confirmed, serving as the impetus for further investigation of such systems as advanced multimodal-multiscale imaging agents with dual orthogonal readouts.
通过将高度结晶的单分散磁铁矿纳米立方体(MNCs)负载磷光Pt(II)配合物(PtCxs)制备了两种不同的混合纳米系统。一种方法是将疏水性的PtCx1封装在两亲梳状聚合物中(MNC@聚(马来酸酐 - 1 - 十八碳烯)[PMAO]-PtCx1),而另一种方法是通过配体交换过程将亲水性的PtCx2直接结合到MNC的表面(MNC@OH - PtCx2)。这两种系统都被评估为磁共振成像(MRI)和光致发光寿命成像显微(光谱)镜检(PLIM)中多模态成像的潜在候选物。在琼脂糖模型上进行的PLIM测量表明,与生物背景的短寿命自发荧光相比,激发态寿命明显更长。此外,这两种纳米系统都作为有效的MRI造影剂(CAs)发挥作用:弛豫率值比商业造影剂 ferucarbotran高3至4倍。MNC@PMAO - PtCx1颗粒还会导致横向弛豫率显著增加。虽然配体交换过程有效地将PtCxs锚定在MNC表面,但聚合物封装确保了更高的胶体稳定性,这导致了PLIM和MRI结果的差异。这些结果证实了在单个纳米系统中成功整合了两种互补的非侵入性成像模态,为进一步研究此类系统作为具有双正交读数的先进多模态 - 多尺度成像剂提供了动力。