Suppr超能文献

基于可穿戴设备的实时 EEG 认知负荷监测。

Real-Time EEG-Based Cognitive Workload Monitoring on Wearable Devices.

出版信息

IEEE Trans Biomed Eng. 2022 Jan;69(1):265-277. doi: 10.1109/TBME.2021.3092206. Epub 2021 Dec 23.

Abstract

OBJECTIVE

Cognitive workload monitoring (CWM) can enhance human-machine interaction by supporting task execution assistance considering the operator's cognitive state. Therefore, we propose a machine learning design methodology and a data processing strategy to enable CWM on resource-constrained wearable devices.

METHODS

Our CWM solution is built upon edge computing on a simple wearable system, with only four peripheral channels of electroencephalography (EEG). We assess our solution on experimental data from 24 volunteers. Moreover, to overcome the system's memory constraints, we adopt an optimization strategy for model size reduction and a multi-batch data processing scheme for optimizing RAM memory footprint. Finally, we implement our data processing strategy on a state-of-the-art wearable platform and assess its execution and system battery life.

RESULTS

We achieve an accuracy of 74.5% and a 74.0% geometric mean between sensitivity and specificity for CWM classification on unseen data. Besides, the proposed model optimization strategy generates a 27.5x smaller model compared to the one generated with default parameters, and the multi-batch data processing scheme reduces RAM memory footprint by 14x compared to a single batch data processing. Finally, our algorithm uses only 1.28% of the available processing time, thus, allowing our system to achieve 28.5 hours of battery life.

CONCLUSION

We provide a reliable and optimized CWM solution using wearable devices, enabling more than a day of operation on a single battery charge.

SIGNIFICANCE

The proposed methodology enables real-time data processing on resource-constrained devices and supports real-time wearable monitoring based on EEG for applications as CWM in human-machine interaction.

摘要

目的

认知工作量监测 (CWM) 可以通过支持考虑操作员认知状态的任务执行辅助来增强人机交互。因此,我们提出了一种机器学习设计方法和数据处理策略,以在资源受限的可穿戴设备上实现 CWM。

方法

我们的 CWM 解决方案基于简单可穿戴系统上的边缘计算,仅使用四个外围脑电图 (EEG) 通道。我们在 24 名志愿者的实验数据上评估我们的解决方案。此外,为了克服系统的内存限制,我们采用了模型尺寸减小的优化策略和用于优化 RAM 内存占用的多批数据处理方案。最后,我们在最先进的可穿戴平台上实现了我们的数据处理策略,并评估了其执行和系统电池寿命。

结果

我们在未见数据上实现了 74.5%的 CWM 分类准确性和 74.0%的灵敏度与特异性几何平均值。此外,与默认参数生成的模型相比,所提出的模型优化策略生成的模型小 27.5 倍,多批数据处理方案与单批数据处理相比,RAM 内存占用减少 14 倍。最后,我们的算法仅使用可用处理时间的 1.28%,因此,我们的系统可以实现 28.5 小时的电池寿命。

结论

我们使用可穿戴设备提供了一种可靠且经过优化的 CWM 解决方案,可在单个电池充电上实现超过一天的操作。

意义

所提出的方法学能够在资源受限的设备上进行实时数据处理,并支持基于 EEG 的实时可穿戴监测,适用于人机交互中的 CWM 等应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验