Suppr超能文献

基于 EEG 的隐马尔可夫模型揭示决策-反馈阶段。

Decision-Feedback Stages Revealed by Hidden Markov Modeling of EEG.

机构信息

The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.

School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.

出版信息

Int J Neural Syst. 2021 Jul;31(7):2150031. doi: 10.1142/S0129065721500313. Epub 2021 Jun 24.

Abstract

Decision response and feedback in gambling are interrelated. Different decisions lead to different ranges of feedback, which in turn influences subsequent decisions. However, the mechanism underlying the continuous decision-feedback process is still left unveiled. To fulfill this gap, we applied the hidden Markov model (HMM) to the gambling electroencephalogram (EEG) data to characterize the dynamics of this process. Furthermore, we explored the differences between distinct decision responses (i.e. choose large or small bets) or distinct feedback (i.e. win or loss outcomes) in corresponding phases. We demonstrated that the processing stages in decision-feedback process including strategy adjustment and visual information processing can be characterized by distinct brain networks. Moreover, time-varying networks showed, after decision response, large bet recruited more resources from right frontal and right center cortices while small bet was more related to the activation of the left frontal lobe. Concerning feedback, networks of win feedback showed a strong right frontal and right center pattern, while an information flow originating from the left frontal lobe to the middle frontal lobe was observed in loss feedback. Taken together, these findings shed light on general principles of natural decision-feedback and may contribute to the design of biologically inspired, participant-independent decision-feedback systems.

摘要

赌博中的决策反应和反馈是相互关联的。不同的决策会导致不同范围的反馈,而反馈又会影响后续的决策。然而,连续的决策-反馈过程背后的机制仍未被揭示。为了填补这一空白,我们将隐马尔可夫模型(HMM)应用于赌博脑电图(EEG)数据,以描述这一过程的动态。此外,我们还探索了不同决策反应(即选择大或小投注)或不同反馈(即赢或输结果)在相应阶段的差异。我们证明,决策-反馈过程中的处理阶段,包括策略调整和视觉信息处理,可以用不同的大脑网络来描述。此外,时变网络显示,在做出决策反应后,大投注更多地从右额和中央皮质募集资源,而小投注则与左额叶的激活更为相关。关于反馈,赢的反馈网络显示出强烈的右额和中央模式,而在输的反馈中则观察到信息流从左额叶到中额叶。总的来说,这些发现揭示了自然决策-反馈的一般原则,并可能有助于设计基于生物启发的、与参与者无关的决策-反馈系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验