Suppr超能文献

自然语言处理与住院医师反馈质量评估。

Natural Language Processing and Assessment of Resident Feedback Quality.

机构信息

University of Michigan Medical School, Ann Arbor, Michigan.

University of Michigan Medical School, Ann Arbor, Michigan.

出版信息

J Surg Educ. 2021 Nov-Dec;78(6):e72-e77. doi: 10.1016/j.jsurg.2021.05.012. Epub 2021 Jun 21.

Abstract

OBJECTIVE

To validate the performance of a natural language processing (NLP) model in characterizing the quality of feedback provided to surgical trainees.

DESIGN

Narrative surgical resident feedback transcripts were collected from a large academic institution and classified for quality by trained coders. 75% of classified transcripts were used to train a logistic regression NLP model and 25% were used for testing the model. The NLP model was trained by uploading classified transcripts and tested using unclassified transcripts. The model then classified those transcripts into dichotomized high- and low- quality ratings. Model performance was primarily assessed in terms of accuracy and secondary performance measures including sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC).

SETTING

A surgical residency program based in a large academic medical center.

PARTICIPANTS

All surgical residents who received feedback via the Society for Improving Medical Professional Learning smartphone application (SIMPL, Boston, MA) in August 2019.

RESULTS

The model classified the quality (high vs. low) of 2,416 narrative feedback transcripts with an accuracy of 0.83 (95% confidence interval: 0.80, 0.86), sensitivity of 0.37 (0.33, 0.45), specificity of 0.97 (0.96, 0.98), and an area under the receiver operating characteristic curve of 0.86 (0.83, 0.87).

CONCLUSIONS

The NLP model classified the quality of operative performance feedback with high accuracy and specificity. NLP offers residency programs the opportunity to efficiently measure feedback quality. This information can be used for feedback improvement efforts and ultimately, the education of surgical trainees.

摘要

目的

验证自然语言处理(NLP)模型在描述外科学员反馈质量方面的性能。

设计

从一所大型学术机构中收集了叙事性外科住院医师反馈记录,并由经过培训的编码员对其质量进行分类。75%的分类记录用于训练逻辑回归 NLP 模型,25%用于测试模型。将分类记录上传到模型中进行训练,并使用未分类记录进行测试。然后,该模型将这些记录分为高质量和低质量两类。模型的性能主要通过准确性进行评估,次要性能指标包括敏感性、特异性和接收器操作特征曲线下的面积(AUROC)。

设置

一家位于大型学术医疗中心的外科住院医师培训计划。

参与者

2019 年 8 月,所有通过 SIMPL(波士顿,马萨诸塞州)智能手机应用程序接受反馈的外科住院医师。

结果

该模型对 2416 份叙事性反馈记录的质量(高 vs. 低)进行了分类,其准确性为 0.83(95%置信区间:0.80,0.86),敏感性为 0.37(0.33,0.45),特异性为 0.97(0.96,0.98),接收器操作特征曲线下的面积为 0.86(0.83,0.87)。

结论

NLP 模型能够非常准确和特异性地对手术绩效反馈的质量进行分类。NLP 为住院医师培训计划提供了一种高效衡量反馈质量的方法。这些信息可用于反馈改进工作,并最终促进外科学员的教育。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验