Suppr超能文献

通过自组装单分子层进行界面工程的钙钛矿发光二极管结构-性能关系案例研究

Case Studies on Structure-Property Relations in Perovskite Light-Emitting Diodes via Interfacial Engineering with Self-Assembled Monolayers.

作者信息

Kim Seo Yeon, Kang Hungu, Chang Kiseok, Yoon Hyo Jae

机构信息

Department of Chemistry, Korea University, Seoul, 02841, Korea.

LG Display, LG Science Park, 30, Magokjungang 10-ro, Gangseo-gu, Seoul, Korea.

出版信息

ACS Appl Mater Interfaces. 2021 Jul 7;13(26):31236-31247. doi: 10.1021/acsami.1c03797. Epub 2021 Jun 25.

Abstract

Metal halide perovskites promise bright and narrow-band light-emitting diodes (LEDs). To this end, reliable understanding on structure-property relations is necessary, yet singling out one effect from others is difficult because photophysical and electronic functions of perovskite LEDs are interwoven each other. To resolve this problem, we herein employ self-assembled monolayers (SAMs) for interfacial engineering nanomaterials. Four different molecules that have the same anchor (thiol), different backbone (aryl vs alkyl) and different terminal group (amine vs pyridine vs methyl) are used to form SAMs at the interface with the thin film of a green-color perovskite, CHNHPbBr. SAM-engineered perovskite films are characterized with X-ray diffraction (XRD), depth-profile X-ray photoelectron spectroscopy (XPS), Kelvin probe force microscopy (KPFM), scanning electron microscopy (SEM), time-resolved laser spectroscopy, and UV-vis absorption and emission spectroscopies. This permits access to how the chemical structure of molecule comprising SAM is related to the various chemical and physical features such as quality and grain size, cross-sectional atomic composition (Pb(0) vs Pb(II)), charge carrier lifetime, and charge mobility of perovskite films, leading to inferences of structure-property relations in the perovskite. Finally, we demonstrate that the trends observed in the model system stem from the affinity of SAM over the undercoordinated Pb ions of perovskite, and these are translated into considerably enhanced EQE (from 2.20 to 5.74%) and narrow-band performances (from 21.3 to 15.9 nm), without a noticeable wavelength shift in perovskite LEDs. Our work suggests that SAM-based interfacial engineering holds a promise for deciphering mechanisms of perovskite LEDs.

摘要

金属卤化物钙钛矿有望用于制造明亮且窄带的发光二极管(LED)。为此,有必要对结构-性能关系有可靠的理解,但由于钙钛矿LED的光物理和电子功能相互交织,要从其他影响因素中单独分离出一种效应并非易事。为了解决这个问题,我们在此采用自组装单分子层(SAMs)进行界面工程纳米材料的研究。使用四种具有相同锚定基团(硫醇)、不同主链(芳基与烷基)和不同端基(胺基、吡啶基与甲基)的不同分子,在与绿色钙钛矿CHNH₃PbBr薄膜的界面处形成SAMs。通过X射线衍射(XRD)、深度剖析X射线光电子能谱(XPS)、开尔文探针力显微镜(KPFM)、扫描电子显微镜(SEM)、时间分辨激光光谱以及紫外-可见吸收和发射光谱对经SAM工程处理的钙钛矿薄膜进行表征。这使得我们能够了解构成SAM的分子化学结构如何与钙钛矿薄膜的各种化学和物理特性相关,如质量和晶粒尺寸、横截面原子组成(Pb(0)与Pb(II))、电荷载流子寿命以及电荷迁移率,从而推断出钙钛矿中的结构-性能关系。最后,我们证明在该模型系统中观察到的趋势源于SAM对钙钛矿中配位不足的Pb离子的亲和力,并且这些趋势转化为相当大的外量子效率提升(从2.20%提高到5.74%)和窄带性能提升(从21.3纳米到15.9纳米),而钙钛矿LED的波长没有明显偏移。我们的工作表明基于SAM的界面工程在解读钙钛矿LED的机制方面具有前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验