Suppr超能文献

揭示具有紫外线防护能力的仿生光突触中晶体自组装单分子层的作用。

Revealing the Effect of Crystalline Self-Assembled Monolayer in Biomimetic Photosynapse with Ultraviolet Light Protection Capability.

作者信息

Wu Ya-Shuan, Chen Wei-Cheng, Lin Yi-Sa, Liu Cheng-Liang, Lin Yan-Cheng, Chen Wen-Chang

机构信息

Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.

Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10607, Taiwan.

出版信息

ACS Appl Mater Interfaces. 2024 Dec 18;16(50):69645-69659. doi: 10.1021/acsami.4c14221. Epub 2024 Dec 5.

Abstract

The research on photonic synapses holds immense promise for various applications, such as robotics and artificial intelligence. Pursuing lightweight, miniaturized, and low-energy consumption designs is crucial for enhancing efficiency and adaptability in evolving technological environments. To achieve this goal, this work designs a series of conjugated self-assembled molecules with photoactive pyrene, benzo-naphthol-thiophene (BNT), perylene, and benzothieno-benzothiophene cores to develop ultrathin (<3 nm) charge-trapping self-assembled monolayers (SAMs). The highly crystalline BNT forms an orderly arrangement with the semiconducting channel, further exhibiting distinguished current contrast stability (∼10) and synaptic features, including paired-pulse facilitation (153%), ultralow energy consumption (28.9 aJ), and short/long-term plasticity. The device successfully demonstrates the emulation of human learning behavior and the self-protection mechanism against ultraviolet radiation utilizing crystalline and conjugated SAMs with different charge traps. Additionally, the capability of background denoising is evidenced by the high recognition accuracy (∼90%) for the preprocessed images. This study not only strengthens the diverse functionality of SAMs in optoelectronic devices but also highlights the significant potential of device miniaturization for biomimetic applications, making it a crucial contribution to the field.

摘要

对光子突触的研究在机器人技术和人工智能等各种应用中具有巨大的前景。追求轻量化、小型化和低能耗设计对于在不断发展的技术环境中提高效率和适应性至关重要。为实现这一目标,本工作设计了一系列具有光活性芘、苯并萘酚噻吩(BNT)、苝和苯并噻吩并苯并噻吩核心的共轭自组装分子,以开发超薄(<3纳米)电荷俘获自组装单分子层(SAMs)。高度结晶的BNT与半导体通道形成有序排列,进一步展现出显著的电流对比度稳定性(约10)以及突触特性,包括双脉冲易化(153%)、超低能耗(28.9阿焦耳)和短期/长期可塑性。该器件成功展示了利用具有不同电荷陷阱的结晶和共轭SAMs对人类学习行为的模拟以及针对紫外线辐射的自我保护机制。此外,预处理图像的高识别准确率(约90%)证明了背景去噪能力。这项研究不仅增强了SAMs在光电器件中的多样功能,还突出了器件小型化在仿生应用中的巨大潜力,使其成为该领域的一项重要贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc6b/11660150/0531bfe934fa/am4c14221_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验