Jiang Wenlin, Liu Ming, Li Yanxun, Lin Francis R, Jen Alex K-Y
Department of Materials Science and Engineering, City University of Hong Kong Kowloon 999077 Hong Kong
Department of Chemistry, City University of Hong Kong Kowloon 999077 Hong Kong.
Chem Sci. 2024 Jan 17;15(8):2778-2785. doi: 10.1039/d3sc05485c. eCollection 2024 Feb 22.
Self-assembled monolayers (SAMs) have been widely employed as the bottom-contact hole-selective layer (HSL) in inverted perovskite solar cells (PSCs). Besides manipulating the electrical properties, molecularly engineering the SAM provides an opportunity to modulate the perovskite buried interface. Here, we successfully introduced Lewis-basic oxygen and sulfur heteroatoms through rational molecular design of asymmetric SAMs to obtain two novel multifunctional SAMs, CbzBF and CbzBT. Detailed characterization of single-crystal structures and device interfaces shows that enhanced packing, more effective ITO work function adjustment, and buried interface passivation were successfully achieved. Consequently, the champion PSC employing CbzBT showed an excellent power conversion efficiency (PCE) of 24.0% with a high fill factor of 84.41% and improved stability. This work demonstrates the feasibility of introducing defect-passivating heterocyclic groups into SAM molecules to help passivate the interfacial defects in PSCs. The insights gained from this molecular design strategy will accelerate the development of new multifunctional SAM HSLs for efficient PSCs.
自组装单分子层(SAMs)已被广泛用作倒置钙钛矿太阳能电池(PSCs)中的底部接触空穴选择性层(HSL)。除了控制电学性质外,对SAM进行分子工程还为调节钙钛矿掩埋界面提供了机会。在此,我们通过不对称SAM的合理分子设计成功引入了路易斯碱性氧和硫杂原子,从而获得了两种新型多功能SAM,即CbzBF和CbzBT。单晶结构和器件界面的详细表征表明,成功实现了增强的堆积、更有效的ITO功函数调节以及掩埋界面钝化。因此,采用CbzBT的冠军PSC表现出24.0%的优异功率转换效率(PCE),填充因子高达84.41%,并且稳定性得到了提高。这项工作证明了将缺陷钝化杂环基团引入SAM分子以帮助钝化PSC界面缺陷的可行性。从这种分子设计策略中获得的见解将加速用于高效PSC的新型多功能SAM HSL的开发。