Suppr超能文献

自组装分子在卤化物钙钛矿光电器件中的作用:原子尺度视角

Role of self-assembled molecules in halide perovskite optoelectronics: an atomic-scale perspective.

作者信息

Wang Xiaoyu, Wang Xue, Wang Xinjiang, Li Muchen, Li Hanming, Fu Yuhao, Zhang Lijun

机构信息

State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.

State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China.

出版信息

Natl Sci Rev. 2025 Apr 24;12(5):nwaf150. doi: 10.1093/nsr/nwaf150. eCollection 2025 May.

Abstract

Despite significant advancements in the study of metal halide perovskites worldwide, the large-scale industrialization of related optoelectronic devices faces ongoing challenges related to efficiency, long-term stability, and environmental and human toxicity. Self-assembled molecules (SAMs) have recently emerged as crucial strategies for enhancing device performance and stability, particularly by mitigating interface-related challenges. This review provides a comprehensive examination of the multifaceted roles of SAMs in enhancing the performance and stability of perovskite optoelectronic devices. We begin by introducing the evolution of SAMs, their unique physicochemical properties and implemented applications in optoelectronic devices. Subsequently, we delve into the diverse beneficial effects of SAMs in perovskite devices and elucidate the underlying atomic-scale mechanisms responsible for these performance enhancements. Finally, we critically analyze the current challenges associated with the rational design and implementation of SAMs in perovskite devices and conclude by outlining promising future research directions.

摘要

尽管全球范围内金属卤化物钙钛矿的研究取得了重大进展,但相关光电器件的大规模工业化仍面临着与效率、长期稳定性以及环境和人体毒性相关的持续挑战。自组装分子(SAMs)最近已成为提高器件性能和稳定性的关键策略,特别是通过缓解与界面相关的挑战。本综述全面考察了SAMs在提高钙钛矿光电器件性能和稳定性方面的多方面作用。我们首先介绍SAMs的发展历程、其独特的物理化学性质以及在光电器件中的应用。随后,我们深入探讨SAMs在钙钛矿器件中的各种有益作用,并阐明导致这些性能提升的潜在原子尺度机制。最后,我们批判性地分析了当前在钙钛矿器件中合理设计和应用SAMs所面临的挑战,并通过概述未来有前景的研究方向得出结论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d731/12096312/ba70cfba05a5/nwaf150fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验