Suppr超能文献

用人工神经网络插分非绝热分子动力学哈密顿量。

Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks.

机构信息

Department of Chemical Engineering, University of Southern California, Los Angeles, California 90089, United States.

Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.

出版信息

J Phys Chem Lett. 2021 Jul 8;12(26):6070-6077. doi: 10.1021/acs.jpclett.1c01645. Epub 2021 Jun 25.

Abstract

Nonadiabatic (NA) molecular dynamics (MD) allows one to study far-from-equilibrium processes involving excited electronic states coupled to atomic motions. While NAMD involves expensive calculations of excitation energies and NA couplings (NACs), ground-state properties require much less effort and can be obtained with machine learning (ML) at a fraction of the ab initio cost. Application of ML to excited states and NACs is more challenging, due to costly reference methods, many states, and complex geometry dependence. We developed a NAMD methodology that avoids time extrapolation of excitation energies and NACs. Instead, under the classical path approximation that employs a precomputed ground-state trajectory, we use a small fraction (2%) of the geometries to train neural networks and obtain excited-state energies and NACs for the remaining 98% of the geometries by interpolation. Demonstrated with metal halide perovskites that exhibit complex MD, the method provides nearly two orders of computational savings while generating accurate NAMD results.

摘要

非绝热(NA)分子动力学(MD)允许研究涉及与原子运动耦合的激发电子态的远非平衡过程。虽然 NAMD 需要计算激发能和非绝热耦合(NAC)的昂贵计算,但基态性质需要的工作量要少得多,可以通过机器学习(ML)以低于从头算成本的分数获得。由于昂贵的参考方法、许多状态和复杂的几何依赖性,将 ML 应用于激发态和 NAC 更具挑战性。我们开发了一种避免激发能和 NAC 时间外推的 NAMD 方法。相反,在采用预先计算的基态轨迹的经典路径近似下,我们使用一小部分(2%)的结构来训练神经网络,并通过插值获得其余 98%的结构的激发态能量和 NAC。该方法在展示具有复杂 MD 的金属卤化物钙钛矿时,提供了近两个数量级的计算节省,同时生成了准确的 NAMD 结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验