MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.
Tsinghua-Peking Center for Life Sciences, Beijing, China.
Nat Chem Biol. 2021 Jul;17(7):755-766. doi: 10.1038/s41589-021-00805-7. Epub 2021 Jun 25.
RNA molecules fold into complex structures that enable their diverse functions in cells. Recent revolutionary innovations in transcriptome-wide RNA structural probing of living cells have ushered in a new era in understanding RNA functions. Here, we summarize the latest technological advances for probing RNA secondary structures and discuss striking discoveries that have linked RNA regulation and biological processes through interrogation of RNA structures. In particular, we highlight how different long noncoding RNAs form into distinct secondary structures that determine their modes of interactions with protein partners to realize their unique functions. These dynamic structures mediate RNA regulatory functions through altering interactions with proteins and other RNAs. We also outline current methodological hurdles and speculate about future directions for development of the next generation of RNA structure-probing technologies of higher sensitivity and resolution, which could then be applied in increasingly physiologically relevant studies.
RNA 分子折叠成复杂的结构,使其在细胞中具有多种功能。最近,在对活细胞进行全转录组 RNA 结构探测方面的革命性创新,开创了理解 RNA 功能的新时代。在这里,我们总结了探测 RNA 二级结构的最新技术进展,并讨论了通过探测 RNA 结构而得出的将 RNA 调控与生物过程联系起来的惊人发现。特别是,我们强调了不同的长非编码 RNA 如何形成不同的二级结构,从而决定它们与蛋白质伴侣相互作用的方式,以实现其独特的功能。这些动态结构通过改变与蛋白质和其他 RNA 的相互作用来介导 RNA 的调控功能。我们还概述了当前的方法学障碍,并对下一代具有更高灵敏度和分辨率的 RNA 结构探测技术的未来发展方向进行了推测,这些技术随后可以应用于越来越多与生理相关的研究中。