Suppr超能文献

基于谷胱甘肽响应性二氧化硅纳米粒子的体内靶向递送核酸和 CRISPR 基因组编辑。

In vivo targeted delivery of nucleic acids and CRISPR genome editors enabled by GSH-responsive silica nanoparticles.

机构信息

Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.

Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA.

出版信息

J Control Release. 2021 Aug 10;336:296-309. doi: 10.1016/j.jconrel.2021.06.030. Epub 2021 Jun 23.

Abstract

The rapid development of gene therapy and genome editing techniques brings up an urgent need to develop safe and efficient nanoplatforms for nucleic acids and CRISPR genome editors. Herein we report a stimulus-responsive silica nanoparticle (SNP) capable of encapsulating biomacromolecules in their active forms with a high loading content and loading efficiency as well as a well-controlled nanoparticle size (~50 nm). A disulfide crosslinker was integrated into the silica network, endowing SNP with glutathione (GSH)-responsive cargo release capability when internalized by target cells. An imidazole-containing component was incorporated into the SNP to enhance the endosomal escape capability. The SNP can deliver various cargos, including nucleic acids (e.g., DNA and mRNA) and CRISPR genome editors (e.g., Cas9/sgRNA ribonucleoprotein (RNP), and RNP with donor DNA) with excellent efficiency and biocompatibility. The SNP surface can be PEGylated and functionalized with different targeting ligands. In vivo studies showed that subretinally injected SNP conjugated with all-trans-retinoic acid (ATRA) and intravenously injected SNP conjugated with GalNAc can effectively deliver mRNA and RNP to murine retinal pigment epithelium (RPE) cells and liver cells, respectively, leading to efficient genome editing. Overall, the SNP is a promising nanoplatform for various applications including gene therapy and genome editing.

摘要

基因治疗和基因组编辑技术的快速发展提出了开发安全有效的核酸和 CRISPR 基因组编辑纳米平台的迫切需求。在此,我们报告了一种刺激响应型二氧化硅纳米颗粒(SNP),它能够以高载药含量和载药效率以及可控的纳米颗粒尺寸(约 50nm)将生物大分子封装在其活性形式中。二硫键交联剂被整合到二氧化硅网络中,当被靶细胞内化时,赋予 SNP 谷胱甘肽(GSH)响应的货物释放能力。将含咪唑的成分掺入 SNP 中,以增强内涵体逃逸能力。SNP 可以高效且具有生物相容性地递送各种货物,包括核酸(如 DNA 和 mRNA)和 CRISPR 基因组编辑物(如 Cas9/sgRNA 核糖核蛋白(RNP)和带有供体 DNA 的 RNP)。SNP 表面可以聚乙二醇化并通过不同的靶向配体进行功能化。体内研究表明,与全反式视黄酸(ATRA)缀合的视网膜下注射 SNP 和与 GalNAc 缀合的静脉内注射 SNP 可以分别有效地将 mRNA 和 RNP 递送至小鼠视网膜色素上皮(RPE)细胞和肝细胞,从而实现有效的基因组编辑。总的来说,SNP 是一种很有前途的纳米平台,可用于包括基因治疗和基因组编辑在内的各种应用。

相似文献

引用本文的文献

5
Nonviral targeted mRNA delivery: principles, progresses, and challenges.非病毒靶向mRNA递送:原理、进展与挑战。
MedComm (2020). 2025 Jan 2;6(1):e70035. doi: 10.1002/mco2.70035. eCollection 2025 Jan.
6
Cellular functions and biomedical applications of circular RNAs.环状RNA的细胞功能与生物医学应用
Acta Biochim Biophys Sin (Shanghai). 2024 Dec 24;57(1):157-168. doi: 10.3724/abbs.2024241.
10
How Advanced are Nanocarriers for Effective Subretinal Injection?用于有效视网膜下注射的纳米载体有多先进?
Int J Nanomedicine. 2024 Sep 10;19:9273-9289. doi: 10.2147/IJN.S479327. eCollection 2024.

本文引用的文献

5
Lipid-based nanoparticle technologies for liver targeting.用于肝脏靶向的基于脂质的纳米颗粒技术。
Adv Drug Deliv Rev. 2020;154-155:79-101. doi: 10.1016/j.addr.2020.06.017. Epub 2020 Jun 20.
10
Rational designs of in vivo CRISPR-Cas delivery systems.体内 CRISPR-Cas 递送系统的合理设计。
Adv Drug Deliv Rev. 2021 Jan;168:3-29. doi: 10.1016/j.addr.2019.11.005. Epub 2019 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验