Universidad Autónoma de Nuevo León, UANL. Facultad de Ciencias Químicas, Av. Universidad s/n. CD. Universitaria, San Nicolás de los Garza, 66451, Nuevo León, México.
Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, 66629, Apodaca, Nuevo León, México.
J Nanobiotechnology. 2021 Jun 26;19(1):190. doi: 10.1186/s12951-021-00937-x.
Within the last decade, genetic engineering and synthetic biology have revolutionized society´s ability to mass-produce complex biological products within genetically-modified microorganisms containing elegantly designed genetic circuitry. However, many challenges still exist in developing bioproduction processes involving genetically modified microorganisms with complex or multiple gene circuits. These challenges include the development of external gene expression regulation methods with the following characteristics: spatial-temporal control and scalability, while inducing minimal permanent or irreversible system-wide conditions. Different stimuli have been used to control gene expression and mitigate these challenges, and they can be characterized by the effect they produce in the culture media conditions. Invasive stimuli that cause permanent, irreversible changes (pH and chemical inducers), non-invasive stimuli that cause partially reversible changes (temperature), and non-invasive stimuli that cause reversible changes in the media conditions (ultrasound, magnetic fields, and light).
Opto-control of gene expression is a non-invasive external trigger that complies with most of the desired characteristics of an external control system. However, the disadvantage relies on the design of the biological photoreceptors and the necessity to design them to respond to a different wavelength for every bioprocess needed to be controlled or regulated in the microorganism. Therefore, this work proposes using biocompatible metallic nanoparticles as external controllers of gene expression, based on their ability to convert light into heat and the capacity of nanotechnology to easily design a wide array of nanostructures capable of absorbing light at different wavelengths and inducing plasmonic photothermal heating.
Here, we designed a nanobiosystem that can be opto-thermally triggered using LED light. The nanobiosystem is composed of biocompatible gold nanoparticles and a genetically modified E. coli with a plasmid that allows mCherry fluorescent protein production at 37 °C in response to an RNA thermometer.
The LED-triggered photothermal protein production system here designed offers a new, cheaper, scalable switchable method, non-destructive for living organisms, and contribute toward the evolution of bioprocess production systems.
在过去的十年中,基因工程和合成生物学彻底改变了社会在遗传修饰微生物中大规模生产复杂生物产品的能力,这些微生物中包含精心设计的遗传线路。然而,在开发涉及具有复杂或多个基因线路的遗传修饰微生物的生物生产工艺方面,仍然存在许多挑战。这些挑战包括开发具有以下特征的外部基因表达调控方法:时空控制和可扩展性,同时诱导最小的永久性或不可逆的系统范围条件。已经使用了不同的刺激来控制基因表达并减轻这些挑战,并且可以根据它们在培养介质条件中产生的效果来对其进行特征描述。侵入性刺激会导致永久性、不可逆的变化(pH 值和化学诱导剂),非侵入性刺激会导致部分可逆的变化(温度),以及非侵入性刺激会导致介质条件可逆变化(超声、磁场和光)。
基因表达的光控是一种非侵入性的外部触发因素,符合外部控制系统的大多数理想特性。然而,缺点在于生物光感受器的设计以及需要为每个需要控制或调节的生物过程设计它们以响应不同波长的设计。因此,这项工作提出了使用生物相容性金属纳米粒子作为基因表达的外部控制器,基于它们将光转化为热的能力以及纳米技术能够轻松设计能够在不同波长吸收光并诱导等离子体光热加热的各种纳米结构的能力。
在这里,我们设计了一种可以使用 LED 光进行光热触发的纳米生物系统。该纳米生物系统由生物相容性金纳米粒子和带有质粒的遗传修饰大肠杆菌组成,该质粒允许在 37°C 下响应 RNA 温度计产生 mCherry 荧光蛋白。
这里设计的 LED 触发光热蛋白生产系统提供了一种新的、更便宜、可扩展的开关方法,对生物体无损伤,并有助于生物生产系统的发展。