Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart, Germany.
1] Fakultät für Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München, Germany [2].
Nat Mater. 2014 Sep;13(9):862-6. doi: 10.1038/nmat4031. Epub 2014 Jul 6.
A reconfigurable plasmonic nanosystem combines an active plasmonic structure with a regulated physical or chemical control input. There have been considerable efforts on integration of plasmonic nanostructures with active platforms using top-down techniques. The active media include phase-transition materials, graphene, liquid crystals and carrier-modulated semiconductors, which can respond to thermal, electrical and optical stimuli. However, these plasmonic nanostructures are often restricted to two-dimensional substrates, showing desired optical response only along specific excitation directions. Alternatively, bottom-up techniques offer a new pathway to impart reconfigurability and functionality to passive systems. In particular, DNA has proven to be one of the most versatile and robust building blocks for construction of complex three-dimensional architectures with high fidelity. Here we show the creation of reconfigurable three-dimensional plasmonic metamolecules, which execute DNA-regulated conformational changes at the nanoscale. DNA serves as both a construction material to organize plasmonic nanoparticles in three dimensions, as well as fuel for driving the metamolecules to distinct conformational states. Simultaneously, the three-dimensional plasmonic metamolecules can work as optical reporters, which transduce their conformational changes in situ into circular dichroism changes in the visible wavelength range.
可重构等离子体纳米系统将有源等离子体结构与受调控的物理或化学控制输入相结合。人们已经在使用自上而下的技术将等离子体纳米结构与有源平台集成方面做出了相当大的努力。有源介质包括相变材料、石墨烯、液晶和载流子调制半导体,它们可以响应热、电和光刺激。然而,这些等离子体纳米结构通常仅限于二维衬底,仅在特定的激发方向上表现出所需的光学响应。另一方面,自下而上的技术为赋予无源系统可重构性和功能性提供了一条新途径。特别是,DNA 已被证明是构建具有高保真度的复杂三维结构的最通用和最稳健的构建模块之一。在这里,我们展示了可重构三维等离子体超材料的创建,该超材料在纳米尺度上执行 DNA 调控的构象变化。DNA 不仅可用作在三维空间中组织等离子体纳米粒子的构建材料,还可用作驱动超分子到不同构象状态的燃料。同时,三维等离子体超分子可以作为光学报告器,将其构象变化原位转换为可见光波长范围内的圆二色性变化。