Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK.
Department of Health Sciences, Mid Sweden University, Östersund, Sweden.
Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20200349. doi: 10.1098/rstb.2020.0349. Epub 2021 Jun 28.
Continuous measurements of haemodynamic and oxygenation changes in free living animals remain elusive. However, developments in biomedical technologies may help to fill this knowledge gap. One such technology is continuous-wave near-infrared spectroscopy (CW-NIRS)-a wearable and non-invasive optical technology. Here, we develop a marinized CW-NIRS system and deploy it on elite competition freedivers to test its capacity to function during deep freediving to 107 m depth. We use the oxyhaemoglobin and deoxyhaemoglobin concentration changes measured with CW-NIRS to monitor cerebral haemodynamic changes and oxygenation, arterial saturation and heart rate. Furthermore, using concentration changes in oxyhaemoglobin engendered by cardiac pulsation, we demonstrate the ability to conduct additional feature exploration of cardiac-dependent haemodynamic changes. Freedivers showed cerebral haemodynamic changes characteristic of apnoeic diving, while some divers also showed considerable elevations in venous blood volumes close to the end of diving. Some freedivers also showed pronounced arterial deoxygenation, the most extreme of which resulted in an arterial saturation of 25%. Freedivers also displayed heart rate changes that were comparable to diving mammals both in magnitude and patterns of change. Finally, changes in cardiac waveform associated with heart rates less than 40 bpm were associated with changes indicative of a reduction in vascular compliance. The success here of CW-NIRS to non-invasively measure a suite of physiological phenomenon in a deep-diving mammal highlights its efficacy as a future physiological monitoring tool for human freedivers as well as free living animals. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.
在自由生活的动物中连续测量血液动力学和氧合变化仍然难以实现。然而,生物医学技术的发展可能有助于填补这一知识空白。连续波近红外光谱(CW-NIRS)就是这样一种可穿戴的、非侵入性的光学技术。在这里,我们开发了一种海洋化的 CW-NIRS 系统,并将其部署在精英竞技自由潜水员身上,以测试其在 107 米深度的深潜过程中的功能。我们使用 CW-NIRS 测量的氧合血红蛋白和脱氧血红蛋白浓度变化来监测大脑血液动力学变化和氧合、动脉饱和度和心率。此外,我们利用心脏搏动引起的氧合血红蛋白浓度变化,展示了对心脏依赖的血液动力学变化进行额外特征探索的能力。自由潜水员表现出与呼吸暂停潜水特征一致的大脑血液动力学变化,而一些潜水员在潜水接近尾声时也显示出静脉血容量的相当大增加。一些自由潜水员还表现出明显的动脉缺氧,最极端的情况导致动脉饱和度为 25%。自由潜水员的心率变化与潜水哺乳动物的心率变化在幅度和变化模式上都相当。最后,与心率低于 40 次/分钟相关的心脏波形变化与血管顺应性降低的变化相关。CW-NIRS 成功地非侵入性地测量了深潜哺乳动物的一系列生理现象,这突出了它作为未来人类自由潜水员和自由生活动物生理监测工具的功效。本文是主题为“在自由生活的动物中测量生理学(第二部分)”的一部分。