Suppr超能文献

当人类大脑潜水时:使用近红外光谱测量精英自由潜水员在深潜、闭气潜水时的大脑和全身心血管反应。

When the human brain goes diving: using near-infrared spectroscopy to measure cerebral and systemic cardiovascular responses to deep, breath-hold diving in elite freedivers.

机构信息

Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK.

Department of Health Sciences, Mid Sweden University, Östersund, Sweden.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2021 Aug 16;376(1831):20200349. doi: 10.1098/rstb.2020.0349. Epub 2021 Jun 28.

Abstract

Continuous measurements of haemodynamic and oxygenation changes in free living animals remain elusive. However, developments in biomedical technologies may help to fill this knowledge gap. One such technology is continuous-wave near-infrared spectroscopy (CW-NIRS)-a wearable and non-invasive optical technology. Here, we develop a marinized CW-NIRS system and deploy it on elite competition freedivers to test its capacity to function during deep freediving to 107 m depth. We use the oxyhaemoglobin and deoxyhaemoglobin concentration changes measured with CW-NIRS to monitor cerebral haemodynamic changes and oxygenation, arterial saturation and heart rate. Furthermore, using concentration changes in oxyhaemoglobin engendered by cardiac pulsation, we demonstrate the ability to conduct additional feature exploration of cardiac-dependent haemodynamic changes. Freedivers showed cerebral haemodynamic changes characteristic of apnoeic diving, while some divers also showed considerable elevations in venous blood volumes close to the end of diving. Some freedivers also showed pronounced arterial deoxygenation, the most extreme of which resulted in an arterial saturation of 25%. Freedivers also displayed heart rate changes that were comparable to diving mammals both in magnitude and patterns of change. Finally, changes in cardiac waveform associated with heart rates less than 40 bpm were associated with changes indicative of a reduction in vascular compliance. The success here of CW-NIRS to non-invasively measure a suite of physiological phenomenon in a deep-diving mammal highlights its efficacy as a future physiological monitoring tool for human freedivers as well as free living animals. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.

摘要

在自由生活的动物中连续测量血液动力学和氧合变化仍然难以实现。然而,生物医学技术的发展可能有助于填补这一知识空白。连续波近红外光谱(CW-NIRS)就是这样一种可穿戴的、非侵入性的光学技术。在这里,我们开发了一种海洋化的 CW-NIRS 系统,并将其部署在精英竞技自由潜水员身上,以测试其在 107 米深度的深潜过程中的功能。我们使用 CW-NIRS 测量的氧合血红蛋白和脱氧血红蛋白浓度变化来监测大脑血液动力学变化和氧合、动脉饱和度和心率。此外,我们利用心脏搏动引起的氧合血红蛋白浓度变化,展示了对心脏依赖的血液动力学变化进行额外特征探索的能力。自由潜水员表现出与呼吸暂停潜水特征一致的大脑血液动力学变化,而一些潜水员在潜水接近尾声时也显示出静脉血容量的相当大增加。一些自由潜水员还表现出明显的动脉缺氧,最极端的情况导致动脉饱和度为 25%。自由潜水员的心率变化与潜水哺乳动物的心率变化在幅度和变化模式上都相当。最后,与心率低于 40 次/分钟相关的心脏波形变化与血管顺应性降低的变化相关。CW-NIRS 成功地非侵入性地测量了深潜哺乳动物的一系列生理现象,这突出了它作为未来人类自由潜水员和自由生活动物生理监测工具的功效。本文是主题为“在自由生活的动物中测量生理学(第二部分)”的一部分。

相似文献

2
Cerebral hemodynamic and systemic physiological changes in trained freedivers completing sled-assisted dives to two different depths.
Am J Physiol Regul Integr Comp Physiol. 2024 Dec 1;327(6):R553-R567. doi: 10.1152/ajpregu.00085.2024. Epub 2024 Sep 6.
3
The oxygen-conserving potential of the diving response: A kinetic-based analysis.
J Sports Sci. 2017 Apr;35(7):678-687. doi: 10.1080/02640414.2016.1183809. Epub 2016 May 11.
4
Case Studies in Physiology: Is blackout in breath-hold diving related to cardiac arrhythmias?
J Appl Physiol (1985). 2023 Apr 1;134(4):951-956. doi: 10.1152/japplphysiol.00708.2022. Epub 2023 Feb 24.
5
Long-term effects of frequent maximal breath-holding on the cardiac health of elite freedivers.
Scand J Med Sci Sports. 2016 Nov;26(11):1283-1286. doi: 10.1111/sms.12580. Epub 2015 Dec 22.
6
Breath-Hold Diving.
Compr Physiol. 2018 Mar 25;8(2):585-630. doi: 10.1002/cphy.c160008.
7
Using Underwater Pulse Oximetry in Freediving to Extreme Depths to Study Risk of Hypoxic Blackout and Diving Response Phases.
Front Physiol. 2021 Apr 1;12:651128. doi: 10.3389/fphys.2021.651128. eCollection 2021.
8
Cerebral metabolism and vascular reactivity during breath-hold and hypoxic challenge in freedivers and healthy controls.
J Cereb Blood Flow Metab. 2019 May;39(5):834-848. doi: 10.1177/0271678X17737909. Epub 2017 Nov 3.
9
Do freedivers and spearfishermen differ in local muscle oxygen saturation and anaerobic power?
J Sports Med Phys Fitness. 2024 Jan;64(1):21-29. doi: 10.23736/S0022-4707.23.15185-1. Epub 2023 Oct 30.
10
Dynamic changes in cerebral oxygenation related to deep hypothermia and circulatory arrest evaluated by near-infrared spectroscopy.
Acta Anaesthesiol Scand. 2001 Jul;45(6):696-701. doi: 10.1034/j.1399-6576.2001.045006696.x.

引用本文的文献

2
Physiological monitoring to prevent diving disorders.
Front Physiol. 2024 Dec 18;15:1517361. doi: 10.3389/fphys.2024.1517361. eCollection 2024.
3
Cerebral hemodynamic and systemic physiological changes in trained freedivers completing sled-assisted dives to two different depths.
Am J Physiol Regul Integr Comp Physiol. 2024 Dec 1;327(6):R553-R567. doi: 10.1152/ajpregu.00085.2024. Epub 2024 Sep 6.
4
Blood oxygen transport and depletion in diving emperor penguins.
J Exp Biol. 2024 Mar 15;227(6). doi: 10.1242/jeb.246832. Epub 2024 Mar 18.
5
Self-calibrated pulse oximetry algorithm based on photon pathlength change and the application in human freedivers.
J Biomed Opt. 2023 Nov;28(11):115002. doi: 10.1117/1.JBO.28.11.115002. Epub 2023 Nov 23.
6
Unlocking the depths: multiple factors contribute to risk for hypoxic blackout during deep freediving.
Eur J Appl Physiol. 2023 Nov;123(11):2483-2493. doi: 10.1007/s00421-023-05250-z. Epub 2023 Jun 10.
8
Dopamine/BDNF loss underscores narcosis cognitive impairment in divers: a proof of concept in a dry condition.
Eur J Appl Physiol. 2023 Jan;123(1):143-158. doi: 10.1007/s00421-022-05055-6. Epub 2022 Oct 10.
9
Near-Infrared Spectroscopy as a Tool for Marine Mammal Research and Care.
Front Physiol. 2022 Jan 17;12:816701. doi: 10.3389/fphys.2021.816701. eCollection 2021.
10
Association Between Arterial Oxygen Saturation and Lung Ultrasound B-Lines After Competitive Deep Breath-Hold Diving.
Front Physiol. 2021 Aug 4;12:711798. doi: 10.3389/fphys.2021.711798. eCollection 2021.

本文引用的文献

1
Shining new light on mammalian diving physiology using wearable near-infrared spectroscopy.
PLoS Biol. 2019 Jun 18;17(6):e3000306. doi: 10.1371/journal.pbio.3000306. eCollection 2019 Jun.
2
Arterial Blood Gas Analysis in Breath-Hold Divers at Depth.
Front Physiol. 2018 Nov 5;9:1558. doi: 10.3389/fphys.2018.01558. eCollection 2018.
3
Stress assessment by means of heart rate derived from functional near-infrared spectroscopy.
J Biomed Opt. 2018 Nov;23(11):1-12. doi: 10.1117/1.JBO.23.11.115001.
4
Cardiovascular magnetic resonance assessment of acute cardiovascular effects of voluntary apnoea in elite divers.
J Cardiovasc Magn Reson. 2018 Jun 18;20(1):40. doi: 10.1186/s12968-018-0455-x.
5
Breath-Hold Diving.
Compr Physiol. 2018 Mar 25;8(2):585-630. doi: 10.1002/cphy.c160008.
6
Paradoxical escape responses by narwhals ().
Science. 2017 Dec 8;358(6368):1328-1331. doi: 10.1126/science.aao2740.
7
Optical blood pressure estimation with photoplethysmography and FFT-based neural networks.
Biomed Opt Express. 2016 Jul 12;7(8):3007-20. doi: 10.1364/BOE.7.003007. eCollection 2016 Aug 1.
8
Evaluation of near-infrared spectroscopy under apnea-dependent hypoxia in humans.
J Clin Monit Comput. 2015 Dec;29(6):749-57. doi: 10.1007/s10877-015-9662-2. Epub 2015 Feb 4.
9
Deep-diving sea lions exhibit extreme bradycardia in long-duration dives.
J Exp Biol. 2014 May 1;217(Pt 9):1525-34. doi: 10.1242/jeb.098558.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验