Suppr超能文献

来自布兰科的PPAR-γ调节因子的基因集富集分析。

Gene set enrichment analysis of PPAR-γ regulators from Blanco.

作者信息

Dwivedi Prarambh Sr, Rasal V P, Kotharkar Ekta, Nare Shailaja, Khanal Pukar

机构信息

Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010 India.

出版信息

J Diabetes Metab Disord. 2021 Feb 17;20(1):369-375. doi: 10.1007/s40200-021-00754-x. eCollection 2021 Jun.

Abstract

BACKGROUND

Peroxisome proliferator-activated receptor gamma (PPAR-γ) is reported to regulate insulin sensitivity and progression of Type 2 diabetes mellitus (T2DM). Hence the present study is aimed to identify PPAR-γ regulators from Blanco and predict their role to manage T2DM.

METHODS

Multiple tools and databases like SwissTargetPrediction, ADVERPred, PubChem, and MolSoft, were used to retrieve the information related to bioactives, targets, druglikeness character, and probable side effects as applicable. Similarly, the Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to identify the regulated pathways. Further, the bioactives-protein-pathways network interaction was constructed using Cytoscape. Finally, molecular docking was performed using Autodock4.

RESULTS

Twenty-five bioactives were shortlisted in which six were predicted as PPAR-γ modulators. Among them, stigmasterol was predicted to possess the best binding affinity towards PPAR-γ and possessed no side effects. Similarly, n-hexadecanoic acid was predicted to modulate the highest number of proteins, and protein CD14 was targeted by the highest number of bioactives. Further, the PI3K-Akt pathway was predicted as the maximum modulated genes.

CONCLUSIONS

The anti-diabetic property of the  Blanco of fruit pulp may be due to the presence of n-hexadecanoic acid and stigmasterol; may also involve in the regulation of the PI3K-Akt pathway which needs further investigated by and protocols.

摘要

背景

据报道,过氧化物酶体增殖物激活受体γ(PPAR-γ)可调节胰岛素敏感性和2型糖尿病(T2DM)的进展。因此,本研究旨在从布兰科中鉴定PPAR-γ调节剂,并预测它们在管理T2DM中的作用。

方法

使用多种工具和数据库,如SwissTargetPrediction、ADVERPred、PubChem和MolSoft,检索与生物活性物质、靶点、类药性质和可能的副作用相关的信息(如适用)。同样,使用京都基因与基因组百科全书(KEGG)数据库来识别受调控的途径。此外,使用Cytoscape构建生物活性物质-蛋白质-途径网络相互作用。最后,使用Autodock4进行分子对接。

结果

筛选出25种生物活性物质,其中6种被预测为PPAR-γ调节剂。其中,豆甾醇被预测对PPAR-γ具有最佳结合亲和力,且无副作用。同样,正十六烷酸被预测可调节最多数量的蛋白质,蛋白质CD14是被最多生物活性物质靶向的靶点。此外,PI3K-Akt途径被预测为受调控最多的基因途径。

结论

果肉布兰科的抗糖尿病特性可能归因于正十六烷酸和豆甾醇的存在;也可能参与PI3K-Akt途径的调节,这需要通过体内和体外实验方案进一步研究。

相似文献

1
Gene set enrichment analysis of PPAR-γ regulators from Blanco.
J Diabetes Metab Disord. 2021 Feb 17;20(1):369-375. doi: 10.1007/s40200-021-00754-x. eCollection 2021 Jun.
2
Gene ontology enrichment analysis of PPAR-γ modulators from in diabetes mellitus.
J Diabetes Metab Disord. 2021 Sep 2;20(2):1239-1246. doi: 10.1007/s40200-021-00848-6. eCollection 2021 Dec.
3
Integration of network and experimental pharmacology to decipher the antidiabetic action of Duranta repens L.
J Integr Med. 2021 Jan;19(1):66-77. doi: 10.1016/j.joim.2020.10.003. Epub 2020 Oct 7.
4
Exploring the therapeutic mechanisms of in diabetes mellitus through network pharmacology, molecular docking and molecular dynamics.
RSC Adv. 2021 Dec 9;11(62):39362-39375. doi: 10.1039/d1ra07661b. eCollection 2021 Dec 6.
6
Network pharmacology of bioactives from Sorghum bicolor with targets related to diabetes mellitus.
PLoS One. 2020 Dec 31;15(12):e0240873. doi: 10.1371/journal.pone.0240873. eCollection 2020.
7
In silico analysis of phytoconstituents from with targets related to diabetes and obesity.
In Silico Pharmacol. 2021 Jan 2;9(1):3. doi: 10.1007/s40203-020-00063-w. eCollection 2021.
9
Potential therapeutic drug targets and pathways prediction for premature ovarian insufficiency -Based on network pharmacologic method.
J Ethnopharmacol. 2023 Mar 25;304:116054. doi: 10.1016/j.jep.2022.116054. Epub 2022 Dec 13.

引用本文的文献

3
Anti-diabetic potential of Corn silk (): An approach.
J Diabetes Metab Disord. 2022 Feb 10;21(1):445-454. doi: 10.1007/s40200-022-00992-7. eCollection 2022 Jun.
4
GLUT-2 mediated glucose uptake analysis of : and approach.
J Diabetes Metab Disord. 2022 Feb 14;21(1):419-427. doi: 10.1007/s40200-022-00988-3. eCollection 2022 Jun.
5
promotes the glucose uptake- Evidence with and .
J Diabetes Metab Disord. 2022 Feb 15;21(1):429-438. doi: 10.1007/s40200-022-00989-2. eCollection 2022 Jun.
6
Exploring the therapeutic mechanisms of in diabetes mellitus through network pharmacology, molecular docking and molecular dynamics.
RSC Adv. 2021 Dec 9;11(62):39362-39375. doi: 10.1039/d1ra07661b. eCollection 2021 Dec 6.
7
Identification of α-amylase inhibitors from flavonoid fraction of and its integration with in-silico studies.
In Silico Pharmacol. 2021 Aug 10;9(1):50. doi: 10.1007/s40203-021-00099-6. eCollection 2021.
8
Identification of PTP1B regulators from and its enrichment analysis for diabetes mellitus.
In Silico Pharmacol. 2021 Apr 11;9(1):30. doi: 10.1007/s40203-021-00088-9. eCollection 2021.

本文引用的文献

1
Combination of system biology to probe the anti-viral activity of andrographolide and its derivative against COVID-19.
RSC Adv. 2021 Jan 27;11(9):5065-5079. doi: 10.1039/d0ra10529e. eCollection 2021 Jan 25.
2
Gene ontology enrichment analysis of α-amylase inhibitors from in diabetes mellitus.
J Diabetes Metab Disord. 2020 Jun 7;19(2):735-747. doi: 10.1007/s40200-020-00554-9. eCollection 2020 Dec.
3
Withanolides from as an immunity booster and their therapeutic options against COVID-19.
J Biomol Struct Dyn. 2022 Aug;40(12):5295-5308. doi: 10.1080/07391102.2020.1869588. Epub 2021 Jan 18.
4
Network pharmacology of AYUSH recommended immune-boosting medicinal plants against COVID-19.
J Ayurveda Integr Med. 2022 Jan-Mar;13(1):100374. doi: 10.1016/j.jaim.2020.11.004. Epub 2020 Nov 25.
5
Integration of network and experimental pharmacology to decipher the antidiabetic action of Duranta repens L.
J Integr Med. 2021 Jan;19(1):66-77. doi: 10.1016/j.joim.2020.10.003. Epub 2020 Oct 7.
7
The PI3K/AKT pathway in obesity and type 2 diabetes.
Int J Biol Sci. 2018 Aug 6;14(11):1483-1496. doi: 10.7150/ijbs.27173. eCollection 2018.
8
ADVERPred-Web Service for Prediction of Adverse Effects of Drugs.
J Chem Inf Model. 2018 Jan 22;58(1):8-11. doi: 10.1021/acs.jcim.7b00568. Epub 2017 Dec 22.
9
The Role of AGE/RAGE Signaling in Diabetes-Mediated Vascular Calcification.
J Diabetes Res. 2016;2016:6809703. doi: 10.1155/2016/6809703. Epub 2016 Jul 28.
10
PubChem Substance and Compound databases.
Nucleic Acids Res. 2016 Jan 4;44(D1):D1202-13. doi: 10.1093/nar/gkv951. Epub 2015 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验