Suppr超能文献

从多重免疫荧光数据中确定和分析细胞空间分布以了解肿瘤微环境的方法

Methods to Determine and Analyze the Cellular Spatial Distribution Extracted From Multiplex Immunofluorescence Data to Understand the Tumor Microenvironment.

作者信息

Parra Edwin Roger

机构信息

Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.

出版信息

Front Mol Biosci. 2021 Jun 14;8:668340. doi: 10.3389/fmolb.2021.668340. eCollection 2021.

Abstract

Image analysis using multiplex immunofluorescence (mIF) to detect different proteins in a single tissue section has revolutionized immunohistochemical methods in recent years. With mIF, individual cell phenotypes, as well as different cell subpopulations and even rare cell populations, can be identified with extraordinary fidelity according to the expression of antibodies in an mIF panel. This technology therefore has an important role in translational oncology studies and probably will be incorporated in the clinic. The expression of different biomarkers of interest can be examined at the tissue or individual cell level using mIF, providing information about cell phenotypes, distribution of cells, and cell biological processes in tumor samples. At present, the main challenge in spatial analysis is choosing the most appropriate method for extracting meaningful information about cell distribution from mIF images for analysis. Thus, knowing how the spatial interaction between cells in the tumor encodes clinical information is important. Exploratory analysis of the location of the cell phenotypes using point patterns of distribution is used to calculate metrics summarizing the distances at which cells are processed and the interpretation of those distances. Various methods can be used to analyze cellular distribution in an mIF image, and several mathematical functions can be applied to identify the most elemental relationships between the spatial analysis of cells in the image and established patterns of cellular distribution in tumor samples. The aim of this review is to describe the characteristics of mIF image analysis at different levels, including spatial distribution of cell populations and cellular distribution patterns, that can increase understanding of the tumor microenvironment.

摘要

近年来,使用多重免疫荧光(mIF)在单个组织切片中检测不同蛋白质的图像分析彻底改变了免疫组织化学方法。通过mIF,可以根据mIF面板中抗体的表达,以极高的保真度识别单个细胞表型、不同的细胞亚群甚至罕见的细胞群体。因此,这项技术在转化肿瘤学研究中具有重要作用,并且可能会被应用于临床。使用mIF可以在组织或单个细胞水平上检查不同感兴趣生物标志物的表达,从而提供有关肿瘤样本中细胞表型、细胞分布和细胞生物学过程的信息。目前,空间分析的主要挑战是选择最合适的方法,从mIF图像中提取有关细胞分布的有意义信息进行分析。因此,了解肿瘤中细胞之间的空间相互作用如何编码临床信息非常重要。利用分布点模式对细胞表型的位置进行探索性分析,用于计算总结细胞间距离的指标以及对这些距离的解释。可以使用各种方法来分析mIF图像中的细胞分布,并且可以应用几种数学函数来识别图像中细胞的空间分析与肿瘤样本中既定细胞分布模式之间最基本的关系。这篇综述的目的是描述mIF图像分析在不同层面的特征,包括细胞群体的空间分布和细胞分布模式,以增进对肿瘤微环境的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/9b9fc4b19966/fmolb-08-668340-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验