文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Methods to Determine and Analyze the Cellular Spatial Distribution Extracted From Multiplex Immunofluorescence Data to Understand the Tumor Microenvironment.

作者信息

Parra Edwin Roger

机构信息

Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.

出版信息

Front Mol Biosci. 2021 Jun 14;8:668340. doi: 10.3389/fmolb.2021.668340. eCollection 2021.


DOI:10.3389/fmolb.2021.668340
PMID:34179080
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8226163/
Abstract

Image analysis using multiplex immunofluorescence (mIF) to detect different proteins in a single tissue section has revolutionized immunohistochemical methods in recent years. With mIF, individual cell phenotypes, as well as different cell subpopulations and even rare cell populations, can be identified with extraordinary fidelity according to the expression of antibodies in an mIF panel. This technology therefore has an important role in translational oncology studies and probably will be incorporated in the clinic. The expression of different biomarkers of interest can be examined at the tissue or individual cell level using mIF, providing information about cell phenotypes, distribution of cells, and cell biological processes in tumor samples. At present, the main challenge in spatial analysis is choosing the most appropriate method for extracting meaningful information about cell distribution from mIF images for analysis. Thus, knowing how the spatial interaction between cells in the tumor encodes clinical information is important. Exploratory analysis of the location of the cell phenotypes using point patterns of distribution is used to calculate metrics summarizing the distances at which cells are processed and the interpretation of those distances. Various methods can be used to analyze cellular distribution in an mIF image, and several mathematical functions can be applied to identify the most elemental relationships between the spatial analysis of cells in the image and established patterns of cellular distribution in tumor samples. The aim of this review is to describe the characteristics of mIF image analysis at different levels, including spatial distribution of cell populations and cellular distribution patterns, that can increase understanding of the tumor microenvironment.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/9d8fe43fefec/fmolb-08-668340-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/9b9fc4b19966/fmolb-08-668340-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/57f1eb452ec0/fmolb-08-668340-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/fc30f4c67bf5/fmolb-08-668340-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/56f05e45d734/fmolb-08-668340-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/6a826f5e0e68/fmolb-08-668340-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/85d9e0a563b1/fmolb-08-668340-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/1f774568b711/fmolb-08-668340-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/ad7ce78377df/fmolb-08-668340-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/8e2001796b17/fmolb-08-668340-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/844fbdaf61cc/fmolb-08-668340-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/9fcacc33c12d/fmolb-08-668340-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/5cc66d11a157/fmolb-08-668340-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/109ea16defed/fmolb-08-668340-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/690d550955ef/fmolb-08-668340-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/9d8fe43fefec/fmolb-08-668340-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/9b9fc4b19966/fmolb-08-668340-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/57f1eb452ec0/fmolb-08-668340-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/fc30f4c67bf5/fmolb-08-668340-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/56f05e45d734/fmolb-08-668340-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/6a826f5e0e68/fmolb-08-668340-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/85d9e0a563b1/fmolb-08-668340-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/1f774568b711/fmolb-08-668340-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/ad7ce78377df/fmolb-08-668340-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/8e2001796b17/fmolb-08-668340-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/844fbdaf61cc/fmolb-08-668340-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/9fcacc33c12d/fmolb-08-668340-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/5cc66d11a157/fmolb-08-668340-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/109ea16defed/fmolb-08-668340-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/690d550955ef/fmolb-08-668340-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cd/8226163/9d8fe43fefec/fmolb-08-668340-g015.jpg

相似文献

[1]
Methods to Determine and Analyze the Cellular Spatial Distribution Extracted From Multiplex Immunofluorescence Data to Understand the Tumor Microenvironment.

Front Mol Biosci. 2021-6-14

[2]
Spatial modelling of the tumor microenvironment from multiplex immunofluorescence images: methods and applications.

Front Immunol. 2023

[3]
Multiplex Immunofluorescence Tyramide Signal Amplification for Immune Cell Profiling of Paraffin-Embedded Tumor Tissues.

Front Mol Biosci. 2021-4-29

[4]
Characterizing the Tumor Immune Microenvironment with Tyramide-Based Multiplex Immunofluorescence.

J Mammary Gland Biol Neoplasia. 2020-12

[5]
Characterization of the immune microenvironment of NSCLC by multispectral analysis of multiplex immunofluorescence images.

Methods Enzymol. 2020

[6]
Spatial UMAP and Image Cytometry for Topographic Immuno-oncology Biomarker Discovery.

Cancer Immunol Res. 2021-11

[7]
Multiplex immunofluorescence staining and image analysis assay for diffuse large B cell lymphoma.

J Immunol Methods. 2019-11-26

[8]
Tissue Multiplex Analyte Detection in Anatomic Pathology - Pathways to Clinical Implementation.

Front Mol Biosci. 2021-7-27

[9]
Companion diagnostic requirements for spatial biology using multiplex immunofluorescence and multispectral imaging.

Front Mol Biosci. 2023-2-9

[10]
Impact of Region-of-Interest Size on Immune Profiling Using Multiplex Immunofluorescence Tyramide Signal Amplification for Paraffin-Embedded Tumor Tissues.

Pathobiology. 2023

引用本文的文献

[1]
Spatial Multiplexing and Omics.

Nat Rev Methods Primers. 2024

[2]
SpaceBF: Spatial coexpression analysis using Bayesian Fused approaches in spatial omics datasets.

bioRxiv. 2025-6-22

[3]
Topological data analysis of pattern formation of human induced pluripotent stem cell colonies.

Sci Rep. 2025-4-4

[4]
Mapping molecular landscapes in triple-negative breast cancer: insights from spatial transcriptomics.

Naunyn Schmiedebergs Arch Pharmacol. 2025-3-22

[5]
Cellular and molecular determinants mediating the dysregulated germinal center immune dynamics in systemic lupus erythematosus.

Front Immunol. 2025-2-13

[6]
PD1 Treg cell remodeling promotes immune homeostasis within peripheral blood and tumor microenvironment after microparticles-transarterial chemoembolization in hepatocellular carcinoma.

Cancer Immunol Immunother. 2025-2-12

[7]
Temporal dynamics of immune cell patterns in bladder cancer patients receiving Bacillus Calmette-Guérin therapy.

Br J Cancer. 2024-12

[8]
PUPAID: A R + ImageJ pipeline for thorough and semi-automated processing and analysis of multi-channel immunofluorescence data.

PLoS One. 2024

[9]
Follicular Immune Landscaping Reveals a Distinct Profile of FOXP3CD4 T Cells in Treated Compared to Untreated HIV.

Vaccines (Basel). 2024-8-12

[10]
Dissecting glial scar formation by spatial point pattern and topological data analysis.

Sci Rep. 2024-8-16

本文引用的文献

[1]
Immuno-profiling and cellular spatial analysis using five immune oncology multiplex immunofluorescence panels for paraffin tumor tissue.

Sci Rep. 2021-4-19

[2]
Identification of distinct immune landscapes using an automated nine-color multiplex immunofluorescence staining panel and image analysis in paraffin tumor tissues.

Sci Rep. 2021-2-25

[3]
Multiplex immunofluorescence to measure dynamic changes in tumor-infiltrating lymphocytes and PD-L1 in early-stage breast cancer.

Breast Cancer Res. 2021-1-7

[4]
Physics approaches to the spatial distribution of immune cells in tumors.

Rep Prog Phys. 2021-2

[5]
Subtype and grade-dependent spatial heterogeneity of T-cell infiltration in pediatric glioma.

J Immunother Cancer. 2020-8

[6]
Prognostic significance of spatial immune profiles in human solid cancers.

Cancer Sci. 2020-8-12

[7]
Spatial Density and Distribution of Tumor-Associated Macrophages Predict Survival in Non-Small Cell Lung Carcinoma.

Cancer Res. 2020-10-15

[8]
Multispectral quantitative immunohistochemical analysis of tumor-infiltrating lymphocytes in relation to programmed death-ligand 1 expression in triple-negative breast cancer.

Breast Cancer. 2020-7

[9]
High-dimensional analyses reveal a distinct role of T-cell subsets in the immune microenvironment of gastric cancer.

Clin Transl Immunology. 2020-5-5

[10]
Procedural Requirements and Recommendations for Multiplex Immunofluorescence Tyramide Signal Amplification Assays to Support Translational Oncology Studies.

Cancers (Basel). 2020-1-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索