Wang Yan, Yang Xin, Hu Cong, Wu Tian
Foshan Power Supply Bureau of Guangdong Power Grid Corporation, Foshan 528000, China.
School of Electrical Engineering & New Energy, China Three Gorges University, Yichang 443002, China.
ACS Omega. 2021 Jun 9;6(24):15878-15884. doi: 10.1021/acsomega.1c01439. eCollection 2021 Jun 22.
Using the first-principles theory, this paper studies the Rh-doping behavior on the ZnO monolayer and investigates the adsorption and sensing behaviors of a Rh-doped ZnO (Rh-ZnO) monolayer to NO and O to explore its potential as a gas sensor to evaluate the operation status of the ring main unit in the power system. The results indicate that the Rh dopant can be stably anchored on the T site of the ZnO monolayer with an of -2.11 eV. The Rh-ZnO monolayer shows chemisorption of NO and O, with values of -2.11 and -1.35 eV, respectively. Then, the electronic behavior of the Rh-ZnO monolayer before and after gas adsorption is analyzed in detail to uncover the sensing mechanism for gas detection. Our findings indicate that the Rh-ZnO monolayer is a promising resistance-type gas sensor with a higher response to O and can be explored as a field-effect gas sensor with a higher response to NO. Our theoretical calculations provide the basic sensing mechanism of the Rh-ZnO monolayer for gas detection and would be meaningful to explore novel sensing materials for gas detection in the field of electrical engineering.
本文运用第一性原理理论,研究了Rh掺杂在ZnO单层上的行为,并研究了Rh掺杂的ZnO(Rh-ZnO)单层对NO和O的吸附及传感行为,以探索其作为气体传感器评估电力系统中环网单元运行状态的潜力。结果表明,Rh掺杂剂可以以-2.11 eV的吸附能稳定地锚定在ZnO单层的T位上。Rh-ZnO单层对NO和O表现出化学吸附,吸附能分别为-2.11和-1.35 eV。然后,详细分析了气体吸附前后Rh-ZnO单层的电子行为,以揭示气体检测的传感机制。我们的研究结果表明,Rh-ZnO单层是一种有前途的电阻型气体传感器,对O具有较高的响应,并且可以作为对NO具有较高响应的场效应气体传感器进行探索。我们的理论计算提供了Rh-ZnO单层用于气体检测的基本传感机制,对于在电气工程领域探索新型气体检测传感材料具有重要意义。