Suppr超能文献

作为环网单元中空气分解物种潜在气体传感器的掺铑氧化锌单层:第一性原理研究

Rh-Doped ZnO Monolayer as a Potential Gas Sensor for Air Decomposed Species in a Ring Main Unit: A First-Principles Study.

作者信息

Wang Yan, Yang Xin, Hu Cong, Wu Tian

机构信息

Foshan Power Supply Bureau of Guangdong Power Grid Corporation, Foshan 528000, China.

School of Electrical Engineering & New Energy, China Three Gorges University, Yichang 443002, China.

出版信息

ACS Omega. 2021 Jun 9;6(24):15878-15884. doi: 10.1021/acsomega.1c01439. eCollection 2021 Jun 22.

Abstract

Using the first-principles theory, this paper studies the Rh-doping behavior on the ZnO monolayer and investigates the adsorption and sensing behaviors of a Rh-doped ZnO (Rh-ZnO) monolayer to NO and O to explore its potential as a gas sensor to evaluate the operation status of the ring main unit in the power system. The results indicate that the Rh dopant can be stably anchored on the T site of the ZnO monolayer with an of -2.11 eV. The Rh-ZnO monolayer shows chemisorption of NO and O, with values of -2.11 and -1.35 eV, respectively. Then, the electronic behavior of the Rh-ZnO monolayer before and after gas adsorption is analyzed in detail to uncover the sensing mechanism for gas detection. Our findings indicate that the Rh-ZnO monolayer is a promising resistance-type gas sensor with a higher response to O and can be explored as a field-effect gas sensor with a higher response to NO. Our theoretical calculations provide the basic sensing mechanism of the Rh-ZnO monolayer for gas detection and would be meaningful to explore novel sensing materials for gas detection in the field of electrical engineering.

摘要

本文运用第一性原理理论,研究了Rh掺杂在ZnO单层上的行为,并研究了Rh掺杂的ZnO(Rh-ZnO)单层对NO和O的吸附及传感行为,以探索其作为气体传感器评估电力系统中环网单元运行状态的潜力。结果表明,Rh掺杂剂可以以-2.11 eV的吸附能稳定地锚定在ZnO单层的T位上。Rh-ZnO单层对NO和O表现出化学吸附,吸附能分别为-2.11和-1.35 eV。然后,详细分析了气体吸附前后Rh-ZnO单层的电子行为,以揭示气体检测的传感机制。我们的研究结果表明,Rh-ZnO单层是一种有前途的电阻型气体传感器,对O具有较高的响应,并且可以作为对NO具有较高响应的场效应气体传感器进行探索。我们的理论计算提供了Rh-ZnO单层用于气体检测的基本传感机制,对于在电气工程领域探索新型气体检测传感材料具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f7/8223398/415b2e86f7db/ao1c01439_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验