Suppr超能文献

基于滤波器组长短期记忆网络的脑电图情感识别方法

[Using electroencephalogram for emotion recognition based on filter-bank long short-term memory networks].

作者信息

Wang Jiaheng, Wang Yueming, Yao Lin

机构信息

School of Computer Science, Zhejiang Universty, Hangzhou 310000, P.R.China.

Frontiers Science Center for Brain & Brain-machine Integration, Zhejiang Universty, Hangzhou 310000, P.R.China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Jun 25;38(3):447-454. doi: 10.7507/1001-5515.202012054.

Abstract

Emotion plays an important role in people's cognition and communication. By analyzing electroencephalogram (EEG) signals to identify internal emotions and feedback emotional information in an active or passive way, affective brain-computer interactions can effectively promote human-computer interaction. This paper focuses on emotion recognition using EEG. We systematically evaluate the performance of state-of-the-art feature extraction and classification methods with a public-available dataset for emotion analysis using physiological signals (DEAP). The common random split method will lead to high correlation between training and testing samples. Thus, we use block-wise fold cross validation. Moreover, we compare the accuracy of emotion recognition with different time window length. The experimental results indicate that 4 s time window is appropriate for sampling. Filter-bank long short-term memory networks (FBLSTM) using differential entropy features as input was proposed. The average accuracy of low and high in valance dimension, arousal dimension and combination of the four in valance-arousal plane is 78.8%, 78.4% and 70.3%, respectively. These results demonstrate the advantage of our emotion recognition model over the current studies in terms of classification accuracy. Our model might provide a novel method for emotion recognition in affective brain-computer interactions.

摘要

情感在人们的认知和交流中起着重要作用。通过分析脑电图(EEG)信号来识别内在情感,并以主动或被动的方式反馈情感信息,情感脑机交互能够有效地促进人机交互。本文聚焦于使用EEG进行情感识别。我们使用一个用于基于生理信号的情感分析的公开可用数据集(DEAP),系统地评估了当前最先进的特征提取和分类方法的性能。常见的随机分割方法会导致训练样本和测试样本之间的高度相关性。因此,我们使用分块折交叉验证。此外,我们比较了不同时间窗口长度下情感识别的准确率。实验结果表明,4秒的时间窗口适合采样。提出了以微分熵特征作为输入的滤波器组长短期记忆网络(FBLSTM)。在效价维度、唤醒维度以及效价-唤醒平面中四个维度的组合方面,低和高的平均准确率分别为78.8%、78.4%和70.3%。这些结果证明了我们的情感识别模型在分类准确率方面优于当前的研究。我们的模型可能为情感脑机交互中的情感识别提供一种新方法。

相似文献

引用本文的文献

3
[Brain-computer interface: from lab to real scene].[脑机接口:从实验室到真实场景]
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Jun 25;38(3):405-408. doi: 10.7507/1001-5515.202105091.

本文引用的文献

2
Multisource Transfer Learning for Cross-Subject EEG Emotion Recognition.跨被试脑电情感识别的多源迁移学习。
IEEE Trans Cybern. 2020 Jul;50(7):3281-3293. doi: 10.1109/TCYB.2019.2904052. Epub 2019 Mar 27.
3
EmotionMeter: A Multimodal Framework for Recognizing Human Emotions.情绪计量器:一种用于识别人类情绪的多模态框架。
IEEE Trans Cybern. 2019 Mar;49(3):1110-1122. doi: 10.1109/TCYB.2018.2797176. Epub 2018 Feb 8.
5
MNE software for processing MEG and EEG data.MEG 和 EEG 数据处理的 MNE 软件。
Neuroimage. 2014 Feb 1;86:446-60. doi: 10.1016/j.neuroimage.2013.10.027. Epub 2013 Oct 24.
6
Emotion recognition from EEG using higher order crossings.基于高阶过零率的脑电图情感识别。
IEEE Trans Inf Technol Biomed. 2010 Mar;14(2):186-97. doi: 10.1109/TITB.2009.2034649. Epub 2009 Oct 23.
8
Long short-term memory.长短期记忆
Neural Comput. 1997 Nov 15;9(8):1735-80. doi: 10.1162/neco.1997.9.8.1735.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验