Krefeld-Schwalb Antonia, Pachur Thorsten, Scheibehenne Benjamin
Columbia Business School, Columbia University.
Max Planck Institute for Human Development.
Psychol Rev. 2022 Mar;129(2):313-339. doi: 10.1037/rev0000285. Epub 2021 Jun 28.
Computational modeling of cognition allows latent psychological variables to be measured by means of adjustable model parameters. The estimation and interpretation of the parameters are impaired, however, if parameters are strongly intercorrelated within the model. We point out that strong parameter interdependencies are especially likely to emerge in models that combine a subjective value function with a probabilistic choice rule-a common structure in the literature. We trace structural parameter interdependencies between value function and choice rule parameters across several prominent computational models, including models on risky choice (cumulative prospect theory), categorization (the generalized context model), and memory (the SIMPLE model of free recall). Using simulation studies with a generic choice model, we show that the accuracy in parameter estimation is hampered in the presence of high parameter intercorrelations, particularly the ability to detect group differences on the parameters and associations of the parameters with external variables. We demonstrate that these problems can be alleviated by using a different specification of stochasticity in the model, for example, by assuming parameter stochasticity or a constant error term. In addition, application to two empirical data sets of risky choice shows that alleviating parameter interdependencies in this way can lead to different conclusions about the estimated parameters. Our analyses highlight a common but often neglected problem of computational models of cognition and identify ways in which the design and application of such models can be improved. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
认知的计算建模允许通过可调整的模型参数来测量潜在的心理变量。然而,如果模型中的参数高度相互关联,那么参数的估计和解释就会受到影响。我们指出,在将主观价值函数与概率选择规则相结合的模型中,参数之间很可能会出现强烈的相互依赖关系——这是文献中常见的结构。我们在几个著名的计算模型中追踪了价值函数和选择规则参数之间的结构参数相互依赖关系,包括风险选择模型(累积前景理论)、分类模型(广义上下文模型)和记忆模型(自由回忆的SIMPLE模型)。通过对一个通用选择模型进行模拟研究,我们表明,在参数高度相互关联的情况下,参数估计的准确性会受到影响,特别是检测参数上的组间差异以及参数与外部变量之间关联的能力。我们证明,通过在模型中使用不同的随机性规范,例如假设参数随机性或常数误差项,可以缓解这些问题。此外,将其应用于两个风险选择的实证数据集表明,以这种方式缓解参数相互依赖关系可能会导致关于估计参数的不同结论。我们的分析突出了认知计算模型中一个常见但经常被忽视的问题,并确定了可以改进此类模型设计和应用的方法。(PsycInfo数据库记录 (c) 2022美国心理学会,保留所有权利)