Suppr超能文献

动态贝叶斯网络学习从时间序列基因表达数据中推断稀疏模型。

Dynamic Bayesian Network Learning to Infer Sparse Models From Time Series Gene Expression Data.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2022 Sep-Oct;19(5):2794-2805. doi: 10.1109/TCBB.2021.3092879. Epub 2022 Oct 10.

Abstract

One of the key challenges in systems biology is to derive gene regulatory networks (GRNs) from complex high-dimensional sparse data. Bayesian networks (BNs) and dynamic Bayesian networks (DBNs) have been widely applied to infer GRNs from gene expression data. GRNs are typically sparse but traditional approaches of BN structure learning to elucidate GRNs often produce many spurious (false positive) edges. We present two new BN scoring functions, which are extensions to the Bayesian Information Criterion (BIC) score, with additional penalty terms and use them in conjunction with DBN structure search methods to find a graph structure that maximises the proposed scores. Our BN scoring functions offer better solutions for inferring networks with fewer spurious edges compared to the BIC score. The proposed methods are evaluated extensively on auto regressive and DREAM4 benchmarks. We found that they significantly improve the precision of the learned graphs, relative to the BIC score. The proposed methods are also evaluated on three real time series gene expression datasets. The results demonstrate that our algorithms are able to learn sparse graphs from high-dimensional time series data. The implementation of these algorithms is open source and is available in form of an R package on GitHub at https://github.com/HamdaBinteAjmal/DBN4GRN, along with the documentation and tutorials.

摘要

系统生物学的一个关键挑战是从复杂的高维稀疏数据中推导出基因调控网络 (GRN)。贝叶斯网络 (BN) 和动态贝叶斯网络 (DBN) 已被广泛应用于从基因表达数据中推断 GRN。GRN 通常是稀疏的,但传统的 BN 结构学习方法通常会产生许多虚假(假阳性)边缘。我们提出了两种新的 BN 评分函数,它们是对贝叶斯信息准则 (BIC) 评分的扩展,具有额外的惩罚项,并将其与 DBN 结构搜索方法结合使用,以找到最大化所提出评分的图结构。与 BIC 评分相比,我们的 BN 评分函数在推断具有较少虚假边缘的网络方面提供了更好的解决方案。所提出的方法在自回归和 DREAM4 基准上进行了广泛评估。我们发现,与 BIC 评分相比,它们显著提高了学习图形的精度。所提出的方法还在三个实时序列基因表达数据集上进行了评估。结果表明,我们的算法能够从高维时间序列数据中学习稀疏图。这些算法的实现是开源的,并以 GitHub 上的 R 包形式提供,网址为 https://github.com/HamdaBinteAjmal/DBN4GRN,同时提供文档和教程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验