Chen Chi-Kan
Department of Applied Mathematics, National Chung Hsing University, 145 Xingda Rd., South District, Taichung City, Taiwan, ROC.
Stat Appl Genet Mol Biol. 2021 Dec 28;20(4-6):121-143. doi: 10.1515/sagmb-2020-0054.
The inference of genetic regulatory networks (GRNs) reveals how genes interact with each other. A few genes can regulate many genes as targets to control cell functions. We present new methods based on the order-1 vector autoregression (VAR1) for inferring GRNs from gene expression time series. The methods use the automatic relevance determination (ARD) to incorporate the regulatory hub structure into the estimation of VAR1 in a Bayesian framework. Several sparse approximation schemes are applied to the estimated regression weights or VAR1 model to generate the sparse weighted adjacency matrices representing the inferred GRNs. We apply the proposed and several widespread reference methods to infer GRNs with up to 100 genes using simulated, DREAM4 in silico and experimental gene expression time series. We show that the proposed methods are efficient on simulated hub GRNs and scale-free GRNs using short time series simulated by VAR1s and outperform reference methods on small-scale DREAM4 in silico GRNs and GRNs. They can utilize the known major regulatory hubs to improve the performance on larger DREAM4 in silico GRNs and GRNs. The impact of nonlinear time series data on the performance of proposed methods is discussed.
基因调控网络(GRN)的推断揭示了基因之间是如何相互作用的。少数基因可以作为靶标调控许多基因,从而控制细胞功能。我们提出了基于一阶向量自回归(VAR1)的新方法,用于从基因表达时间序列推断基因调控网络。这些方法使用自动相关性确定(ARD),在贝叶斯框架下将调控枢纽结构纳入VAR1的估计中。几种稀疏近似方案应用于估计的回归权重或VAR1模型,以生成表示推断出的基因调控网络的稀疏加权邻接矩阵。我们应用所提出的方法以及几种广泛使用的参考方法,使用模拟数据、DREAM4虚拟数据和实验基因表达时间序列来推断多达100个基因的基因调控网络。我们表明,所提出的方法在使用VAR1模拟的短时间序列的模拟枢纽基因调控网络和无标度基因调控网络上是有效的,并且在小规模的DREAM4虚拟基因调控网络和真实基因调控网络上优于参考方法。它们可以利用已知的主要调控枢纽来提高在更大规模的DREAM4虚拟基因调控网络和真实基因调控网络上的性能。还讨论了非线性时间序列数据对所提出方法性能的影响。