Yin Jia-Li, Chen Bo-Hao, Peng Yan-Tsung, Hwang Hau
IEEE Trans Neural Netw Learn Syst. 2022 Dec;33(12):7853-7862. doi: 10.1109/TNNLS.2021.3088907. Epub 2022 Nov 30.
Fusing low dynamic range (LDR) for high dynamic range (HDR) images has gained a lot of attention, especially to achieve real-world application significance when the hardware resources are limited to capture images with different exposure times. However, existing HDR image generation by picking the best parts from each LDR image often yields unsatisfactory results due to either the lack of input images or well-exposed contents. To overcome this limitation, we model the HDR image generation process in two-exposure fusion as a deep reinforcement learning problem and learn an online compensating representation to fuse with LDR inputs for HDR image generation. Moreover, we build a two-exposure dataset with reference HDR images from a public multiexposure dataset that has not yet been normalized to train and evaluate the proposed model. By assessing the built dataset, we show that our reinforcement HDR image generation significantly outperforms other competing methods under different challenging scenarios, even with limited well-exposed contents. More experimental results on a no-reference multiexposure image dataset demonstrate the generality and effectiveness of the proposed model. To the best of our knowledge, this is the first work to use a reinforcement-learning-based framework for an online compensating representation in two-exposure image fusion.
针对高动态范围(HDR)图像融合低动态范围(LDR)已受到广泛关注,特别是在硬件资源有限,无法捕捉具有不同曝光时间的图像时,实现其在现实世界中的应用意义。然而,现有的通过从每个LDR图像中挑选最佳部分来生成HDR图像的方法,由于缺少输入图像或曝光良好的内容,往往产生不尽人意的结果。为克服这一限制,我们将双曝光融合中的HDR图像生成过程建模为一个深度强化学习问题,并学习一种在线补偿表示,与LDR输入进行融合以生成HDR图像。此外,我们从一个尚未归一化的公共多曝光数据集中构建了一个带有参考HDR图像的双曝光数据集,用于训练和评估所提出的模型。通过对构建的数据集进行评估,我们表明,即使在曝光良好的内容有限的情况下,我们的强化HDR图像生成在不同具有挑战性的场景下也显著优于其他竞争方法。在一个无参考多曝光图像数据集上的更多实验结果证明了所提出模型的通用性和有效性。据我们所知,这是第一项在双曝光图像融合中使用基于强化学习的框架进行在线补偿表示的工作。