Suppr超能文献

HDR-GAN:从具有大运动的多曝光低动态范围图像重建高动态范围图像。

HDR-GAN: HDR Image Reconstruction From Multi-Exposed LDR Images With Large Motions.

作者信息

Niu Yuzhen, Wu Jianbin, Liu Wenxi, Guo Wenzhong, Lau Rynson W H

出版信息

IEEE Trans Image Process. 2021;30:3885-3896. doi: 10.1109/TIP.2021.3064433. Epub 2021 Mar 26.

Abstract

Synthesizing high dynamic range (HDR) images from multiple low-dynamic range (LDR) exposures in dynamic scenes is challenging. There are two major problems caused by the large motions of foreground objects. One is the severe misalignment among the LDR images. The other is the missing content due to the over-/under-saturated regions caused by the moving objects, which may not be easily compensated for by the multiple LDR exposures. Thus, it requires the HDR generation model to be able to properly fuse the LDR images and restore the missing details without introducing artifacts. To address these two problems, we propose in this paper a novel GAN-based model, HDR-GAN, for synthesizing HDR images from multi-exposed LDR images. To our best knowledge, this work is the first GAN-based approach for fusing multi-exposed LDR images for HDR reconstruction. By incorporating adversarial learning, our method is able to produce faithful information in the regions with missing content. In addition, we also propose a novel generator network, with a reference-based residual merging block for aligning large object motions in the feature domain, and a deep HDR supervision scheme for eliminating artifacts of the reconstructed HDR images. Experimental results demonstrate that our model achieves state-of-the-art reconstruction performance over the prior HDR methods on diverse scenes.

摘要

从动态场景中的多个低动态范围(LDR)曝光合成高动态范围(HDR)图像具有挑战性。前景物体的大幅运动导致两个主要问题。一个是LDR图像之间的严重失准。另一个是由于移动物体造成的过饱和/欠饱和区域导致的内容缺失,这可能无法通过多个LDR曝光轻易补偿。因此,这要求HDR生成模型能够正确融合LDR图像并恢复缺失的细节而不引入伪影。为了解决这两个问题,我们在本文中提出了一种基于GAN的新型模型HDR-GAN,用于从多曝光LDR图像合成HDR图像。据我们所知,这项工作是第一种基于GAN的融合多曝光LDR图像进行HDR重建的方法。通过引入对抗学习,我们的方法能够在内容缺失的区域产生真实的信息。此外,我们还提出了一种新型生成器网络,具有用于在特征域中对齐大物体运动的基于参考的残差合并块,以及用于消除重建HDR图像伪影的深度HDR监督方案。实验结果表明,我们的模型在各种场景下的重建性能优于现有的HDR方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验