Yoon Howoon, Uddin S M Nadim, Jung Yong Ju
School of Computing, Gachon University, Seongnam 13120, Korea.
Sensors (Basel). 2022 Sep 17;22(18):7044. doi: 10.3390/s22187044.
High-dynamic-range (HDR) image reconstruction methods are designed to fuse multiple Low-dynamic-range (LDR) images captured with different exposure values into a single HDR image. Recent CNN-based methods mostly perform local attention- or alignment-based fusion of multiple LDR images to create HDR contents. Depending on a single attention mechanism or alignment causes failure in compensating ghosting artifacts, which can arise in the synthesized HDR images due to the motion of objects or camera movement across different LDR image inputs. In this study, we propose a multi-scale attention-guided non-local network called MSANLnet for efficient HDR image reconstruction. To mitigate the ghosting artifacts, the proposed MSANLnet performs implicit alignment of LDR image features with multi-scale spatial attention modules and then reconstructs pixel intensity values using long-range dependencies through non-local means-based fusion. These modules adaptively select useful information that is not damaged by an object's movement or unfavorable lighting conditions for image pixel fusion. Quantitative evaluations against several current state-of-the-art methods show that the proposed approach achieves higher performance than the existing methods. Moreover, comparative visual results show the effectiveness of the proposed method in restoring saturated information from original input images and mitigating ghosting artifacts caused by large movement of objects. Ablation studies show the effectiveness of the proposed method, architectural choices, and modules for efficient HDR reconstruction.
高动态范围(HDR)图像重建方法旨在将以不同曝光值捕获的多个低动态范围(LDR)图像融合成单个HDR图像。最近基于卷积神经网络(CNN)的方法大多对多个LDR图像执行基于局部注意力或对齐的融合,以创建HDR内容。依赖单一的注意力机制或对齐会导致在补偿重影伪像时失败,这些重影伪像可能由于物体的运动或相机在不同LDR图像输入上的移动而在合成的HDR图像中出现。在本研究中,我们提出了一种用于高效HDR图像重建的多尺度注意力引导非局部网络,称为MSANLnet。为了减轻重影伪像,所提出的MSANLnet通过多尺度空间注意力模块对LDR图像特征进行隐式对齐,然后通过基于非局部均值的融合利用长程依赖性重建像素强度值。这些模块自适应地选择不受物体运动或不利光照条件影响的有用信息用于图像像素融合。与几种当前的先进方法进行的定量评估表明,所提出的方法比现有方法具有更高的性能。此外,对比视觉结果表明了所提出的方法在从原始输入图像中恢复饱和信息以及减轻由物体的大幅移动引起的重影伪像方面的有效性。消融研究表明了所提出的方法、架构选择和模块对于高效HDR重建的有效性。