Suppr超能文献

复杂盐桥对胶原蛋白稳定性的能量贡献取决于组成。

Composition-dependent energetic contribution of complex salt bridges to collagen stability.

机构信息

Ministry of Education Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China.

Ministry of Education Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China.

出版信息

Biophys J. 2021 Aug 17;120(16):3429-3436. doi: 10.1016/j.bpj.2021.05.028. Epub 2021 Jun 25.

Abstract

Complex salt bridges, on which three or more charged residues interplay simultaneously, cannot be considered as addition of individual salt bridges. This is still an intriguing problem in protein folding and stability. Here, we used an obligated ABC-type collagen heterotrimer as a platform to study the relationship between energetic contributions and conformational details of three-body complex salt bridges anchored by positively charged residues, K and R. Eight complex salt bridges were constructed by engineering point mutations in the heterotrimer. The circular dichroism measurements showed that the K-anchored complex salt bridges were stronger than the R-anchored ones. The molecular dynamics simulation revealed that both types of salt bridges had distinct dynamic features. The energetic contribution of K-anchored salt bridges was mainly determined by strong single bridges. In the R-anchored complex salt bridges, both side-chain electrostatic interactions and side-chain-backbone hydrogen bonding were involved. An empirical equation was proposed to predict the energetic contributions with high accuracy (R = 0.93). This work could help us take insights into the mechanisms of composition-dependent behaviors of the complex salt bridges on protein surface.

摘要

复杂盐桥由三个或更多带电荷的残基同时相互作用,不能被视为单个盐桥的加和。这在蛋白质折叠和稳定性方面仍然是一个有趣的问题。在这里,我们使用一种必需的 ABC 型胶原三聚体作为平台,研究由带正电荷的残基 K 和 R 锚定的三体复杂盐桥的能量贡献与构象细节之间的关系。通过在三聚体中进行定点突变,构建了 8 种复杂盐桥。圆二色性测量表明,K 锚定的复杂盐桥比 R 锚定的复杂盐桥更强。分子动力学模拟揭示了这两种类型的盐桥具有不同的动态特征。K 锚定盐桥的能量贡献主要由强单桥决定。在 R 锚定的复杂盐桥中,侧链静电相互作用和侧链-骨架氢键都参与其中。提出了一个经验公式,可以高精度地预测能量贡献(R=0.93)。这项工作可以帮助我们深入了解蛋白质表面上复杂盐桥组成依赖性行为的机制。

相似文献

1
Composition-dependent energetic contribution of complex salt bridges to collagen stability.
Biophys J. 2021 Aug 17;120(16):3429-3436. doi: 10.1016/j.bpj.2021.05.028. Epub 2021 Jun 25.
2
Stability of collagen heterotrimer with same charge pattern and different charged residue identities.
Biophys J. 2023 Jul 11;122(13):2686-2695. doi: 10.1016/j.bpj.2023.05.023. Epub 2023 May 23.
4
Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics.
Biophys J. 2016 Jun 7;110(11):2328-2341. doi: 10.1016/j.bpj.2016.04.015.
5
Salt-bridge energetics in halophilic proteins.
PLoS One. 2014 Apr 17;9(4):e93862. doi: 10.1371/journal.pone.0093862. eCollection 2014.
6
Defining the role of salt bridges in protein stability.
Methods Mol Biol. 2009;490:227-60. doi: 10.1007/978-1-59745-367-7_10.
8
Versatile triblock peptides mimicking ABC-type heterotrimeric collagen with stabilizing salt bridges.
Int J Biol Macromol. 2024 Jun;272(Pt 1):132446. doi: 10.1016/j.ijbiomac.2024.132446. Epub 2024 May 23.
10
Close-range electrostatic interactions in proteins.
Chembiochem. 2002 Jul 2;3(7):604-17. doi: 10.1002/1439-7633(20020703)3:7<604::AID-CBIC604>3.0.CO;2-X.

引用本文的文献

1
2
Stability of collagen heterotrimer with same charge pattern and different charged residue identities.
Biophys J. 2023 Jul 11;122(13):2686-2695. doi: 10.1016/j.bpj.2023.05.023. Epub 2023 May 23.

本文引用的文献

1
Predicting the stability of homotrimeric and heterotrimeric collagen helices.
Nat Chem. 2021 Mar;13(3):260-269. doi: 10.1038/s41557-020-00626-6. Epub 2021 Feb 15.
2
Covalent Capture of Collagen Triple Helices Using Lysine-Aspartate and Lysine-Glutamate Pairs.
Biomacromolecules. 2020 Sep 14;21(9):3772-3781. doi: 10.1021/acs.biomac.0c00878. Epub 2020 Aug 21.
3
Advances in protein structure prediction and design.
Nat Rev Mol Cell Biol. 2019 Nov;20(11):681-697. doi: 10.1038/s41580-019-0163-x. Epub 2019 Aug 15.
4
How electrostatic networks modulate specificity and stability of collagen.
Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6207-6212. doi: 10.1073/pnas.1802171115. Epub 2018 May 29.
5
Protein thermal stability enhancement by designing salt bridges: a combined computational and experimental study.
PLoS One. 2014 Nov 13;9(11):e112751. doi: 10.1371/journal.pone.0112751. eCollection 2014.
6
The role of cross-chain ionic interactions for the stability of collagen model peptides.
Biophys J. 2013 Oct 1;105(7):1681-8. doi: 10.1016/j.bpj.2013.08.018.
7
GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit.
Bioinformatics. 2013 Apr 1;29(7):845-54. doi: 10.1093/bioinformatics/btt055. Epub 2013 Feb 13.
8
Structural insights into charge pair interactions in triple helical collagen-like proteins.
J Biol Chem. 2012 Mar 9;287(11):8039-47. doi: 10.1074/jbc.M111.296574. Epub 2011 Dec 17.
9
Computational design of a collagen A:B:C-type heterotrimer.
J Am Chem Soc. 2011 Oct 5;133(39):15260-3. doi: 10.1021/ja205597g. Epub 2011 Sep 14.
10
Improved side-chain torsion potentials for the Amber ff99SB protein force field.
Proteins. 2010 Jun;78(8):1950-8. doi: 10.1002/prot.22711.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验