Suppr超能文献

基于机器学习的临床决策支持算法,用于评估非小细胞肺癌患者对抗程序性死亡-1 治疗的临床反应。

Clinical decision support algorithm based on machine learning to assess the clinical response to anti-programmed death-1 therapy in patients with non-small-cell lung cancer.

机构信息

Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.

TheragenBio, Seongnam, Republic of Korea.

出版信息

Eur J Cancer. 2021 Aug;153:179-189. doi: 10.1016/j.ejca.2021.05.019. Epub 2021 Jun 26.

Abstract

OBJECTIVE

Anti-programmed death (PD)-1 therapy confers sustainable clinical benefits for patients with non-small-cell lung cancer (NSCLC), but only some patients respond to the treatment. Various clinical characteristics, including the PD-ligand 1 (PD-L1) level, are related to the anti-PD-1 response; however, none of these can independently serve as predictive biomarkers. Herein, we established a machine learning (ML)-based clinical decision support algorithm to predict the anti-PD-1 response by comprehensively combining the clinical information.

MATERIALS AND METHODS

We collected clinical data, including patient characteristics, mutations and laboratory findings, from the electronic medical records of 142 patients with NSCLC treated with anti-PD-1 therapy; these were analysed for the clinical outcome as the discovery set. Nineteen clinically meaningful features were used in supervised ML algorithms, including LightGBM, XGBoost, multilayer neural network, ridge regression and linear discriminant analysis, to predict anti-PD-1 responses. Based on each ML algorithm's prediction performance, the optimal ML was selected and validated in an independent validation set of PD-1 inhibitor-treated patients.

RESULTS

Several factors, including PD-L1 expression, tumour burden and neutrophil-to-lymphocyte ratio, could independently predict the anti-PD-1 response in the discovery set. ML platforms based on the LightGBM algorithm using 19 clinical features showed more significant prediction performance (area under the curve [AUC] 0.788) than on individual clinical features and traditional multivariate logistic regression (AUC 0.759).

CONCLUSION

Collectively, our LightGBM algorithm offers a clinical decision support model to predict the anti-PD-1 response in patients with NSCLC.

摘要

目的

抗程序性死亡(PD)-1 治疗可为非小细胞肺癌(NSCLC)患者带来可持续的临床获益,但只有部分患者对治疗有反应。各种临床特征,包括 PD-配体 1(PD-L1)水平,与抗 PD-1 反应相关;然而,这些都不能独立作为预测生物标志物。在此,我们建立了一个基于机器学习(ML)的临床决策支持算法,通过综合结合临床信息来预测抗 PD-1 反应。

材料和方法

我们从接受抗 PD-1 治疗的 142 例 NSCLC 患者的电子病历中收集了临床数据,包括患者特征、突变和实验室发现;这些数据被分析为发现集以评估临床结果。19 个有临床意义的特征被用于监督 ML 算法,包括 LightGBM、XGBoost、多层神经网络、岭回归和线性判别分析,以预测抗 PD-1 反应。基于每个 ML 算法的预测性能,选择最佳的 ML 算法并在接受 PD-1 抑制剂治疗的患者的独立验证集中进行验证。

结果

在发现集中,包括 PD-L1 表达、肿瘤负担和中性粒细胞与淋巴细胞比值在内的几个因素可以独立预测抗 PD-1 反应。基于 LightGBM 算法的 ML 平台使用 19 个临床特征显示出更显著的预测性能(曲线下面积 [AUC] 0.788),优于个体临床特征和传统的多变量逻辑回归(AUC 0.759)。

结论

总体而言,我们的 LightGBM 算法为预测 NSCLC 患者的抗 PD-1 反应提供了一种临床决策支持模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验