Captier Nicolas, Lerousseau Marvin, Orlhac Fanny, Hovhannisyan-Baghdasarian Narinée, Luporsi Marie, Woff Erwin, Lagha Sarah, Salamoun Feghali Paulette, Lonjou Christine, Beaulaton Clément, Zinovyev Andrei, Salmon Hélène, Walter Thomas, Buvat Irène, Girard Nicolas, Barillot Emmanuel
Laboratoire d'Imagerie Translationnelle en Oncologie, Institut Curie, Inserm U1288, PSL Research University, Orsay, France.
Bioinformatics and computational systems biology of cancer, Institut Curie, Inserm U900, PSL Research University, Paris, France.
Nat Commun. 2025 Jan 12;16(1):614. doi: 10.1038/s41467-025-55847-5.
Immunotherapy is improving the survival of patients with metastatic non-small cell lung cancer (NSCLC), yet reliable biomarkers are needed to identify responders prospectively and optimize patient care. In this study, we explore the benefits of multimodal approaches to predict immunotherapy outcome using multiple machine learning algorithms and integration strategies. We analyze baseline multimodal data from a cohort of 317 metastatic NSCLC patients treated with first-line immunotherapy, including positron emission tomography images, digitized pathological slides, bulk transcriptomic profiles, and clinical information. Testing multiple integration strategies, most of them yield multimodal models surpassing both the best unimodal models and established univariate biomarkers, such as PD-L1 expression. Additionally, several multimodal combinations demonstrate improved patient risk stratification compared to models built with routine clinical features only. Our study thus provides evidence of the superiority of multimodal over unimodal approaches, advocating for the collection of large multimodal NSCLC datasets to develop and validate robust and powerful immunotherapy biomarkers.
免疫疗法正在提高转移性非小细胞肺癌(NSCLC)患者的生存率,但仍需要可靠的生物标志物来前瞻性地识别反应者并优化患者护理。在本研究中,我们探索了使用多种机器学习算法和整合策略的多模态方法在预测免疫疗法结果方面的益处。我们分析了317例接受一线免疫疗法治疗的转移性NSCLC患者队列的基线多模态数据,包括正电子发射断层扫描图像、数字化病理切片、批量转录组图谱和临床信息。测试多种整合策略后,大多数策略产生的多模态模型超过了最佳单模态模型和已确立的单变量生物标志物,如PD-L1表达。此外,与仅使用常规临床特征构建的模型相比,几种多模态组合显示出改善的患者风险分层。因此,我们的研究提供了多模态方法优于单模态方法的证据,主张收集大型多模态NSCLC数据集以开发和验证强大有力的免疫疗法生物标志物。