Suppr超能文献

自主纳米游泳者在多孔基质中传输增强的机制。

Mechanisms of transport enhancement for self-propelled nanoswimmers in a porous matrix.

机构信息

Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309.

Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309

出版信息

Proc Natl Acad Sci U S A. 2021 Jul 6;118(27). doi: 10.1073/pnas.2101807118.

Abstract

Micro/nanoswimmers convert diverse energy sources into directional movement, demonstrating significant promise for biomedical and environmental applications, many of which involve complex, tortuous, or crowded environments. Here, we investigated the transport behavior of self-propelled catalytic Janus particles in a complex interconnected porous void space, where the rate-determining step involves the escape from a cavity and translocation through holes to adjacent cavities. Surprisingly, self-propelled nanoswimmers escaped from cavities more than 20× faster than passive (Brownian) particles, despite the fact that the mobility of nanoswimmers was less than 2× greater than that of passive particles in unconfined bulk liquid. Combining experimental measurements, Monte Carlo simulations, and theoretical calculations, we found that the escape of nanoswimmers was enhanced by nuanced secondary effects of self-propulsion which were amplified in confined environments. In particular, active escape was facilitated by anomalously rapid confined short-time mobility, highly efficient surface-mediated searching for holes, and the effective abolition of entropic and/or electrostatic barriers at the exit hole regions by propulsion forces. The latter mechanism converted the escape process from barrier-limited to search-limited. These findings provide general and important insights into micro/nanoswimmer mobility in complex environments.

摘要

微/纳米游泳者将各种能源转化为定向运动,在生物医学和环境应用方面具有很大的应用前景,其中许多应用涉及复杂、曲折或拥挤的环境。在这里,我们研究了自推进的催化詹纳斯粒子在复杂的相互连接的多孔空隙中的输运行为,其中决定速率的步骤涉及从腔室中逸出并通过孔迁移到相邻的腔室。令人惊讶的是,尽管纳米游泳者的迁移率小于无约束体相液体中被动(布朗)粒子的迁移率的 2 倍,但自推进纳米游泳者从腔室中逸出的速度比被动粒子快 20 倍以上。通过实验测量、蒙特卡罗模拟和理论计算相结合,我们发现自推进的细微二次效应增强了纳米游泳者的逃逸,这种效应在受限环境中得到了放大。特别是,主动逃逸受到受限短时间内异常快速的迁移率、高效的表面介导的孔搜索以及由推进力有效消除出口孔区域的熵和/或静电障碍的促进。后一种机制将逃逸过程从障碍限制转变为搜索限制。这些发现为微/纳米游泳者在复杂环境中的迁移提供了普遍而重要的见解。

相似文献

3
Fundamental Aspects of Enzyme-Powered Micro- and Nanoswimmers.酶驱动的微纳米游泳器的基本方面。
Acc Chem Res. 2018 Nov 20;51(11):2662-2671. doi: 10.1021/acs.accounts.8b00288. Epub 2018 Oct 10.
4
Designing Micro- and Nanoswimmers for Specific Applications.为特定应用设计微纳游动器。
Acc Chem Res. 2017 Jan 17;50(1):2-11. doi: 10.1021/acs.accounts.6b00386. Epub 2016 Nov 3.
9
Acoustically propelled nanoshells.声驱动纳米壳
Nanoscale. 2016 Oct 20;8(41):17788-17793. doi: 10.1039/c6nr06603h.

本文引用的文献

1
Medical Micro/Nanorobots in Precision Medicine.精准医学中的医用微型/纳米机器人
Adv Sci (Weinh). 2020 Oct 4;7(21):2002203. doi: 10.1002/advs.202002203. eCollection 2020 Nov.
3
Nanoparticle Tracking to Probe Transport in Porous Media.纳米颗粒跟踪技术在多孔介质中的传输研究
Acc Chem Res. 2020 Oct 20;53(10):2130-2139. doi: 10.1021/acs.accounts.0c00408. Epub 2020 Sep 1.
5
Electrostatic Barriers to Nanoparticle Accessibility of a Porous Matrix.静电势阻碍纳米颗粒进入多孔基质。
J Am Chem Soc. 2020 Mar 11;142(10):4696-4704. doi: 10.1021/jacs.9b12096. Epub 2020 Mar 1.
7
Diffusive Escape of a Nanoparticle from a Porous Cavity.纳米颗粒从多孔腔中的扩散逃逸。
Phys Rev Lett. 2019 Sep 13;123(11):118002. doi: 10.1103/PhysRevLett.123.118002.
9
Bacterial hopping and trapping in porous media.细菌在多孔介质中的跳跃和捕获。
Nat Commun. 2019 May 6;10(1):2075. doi: 10.1038/s41467-019-10115-1.
10
Photocatalytic Micro/Nanomotors: From Construction to Applications.光催化微纳马达:从构建到应用
Acc Chem Res. 2018 Sep 18;51(9):1940-1947. doi: 10.1021/acs.accounts.8b00249. Epub 2018 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验