Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States.
Acc Chem Res. 2020 Oct 20;53(10):2130-2139. doi: 10.1021/acs.accounts.0c00408. Epub 2020 Sep 1.
From the granular and fractured subsurface environment to highly engineered polymer membranes used in pharmaceutical purification, porous materials are ubiquitous in nature and industrial applications. In particular, porous media are used extensively in processes including water treatment, pharmaceutical sterilization, food/beverage processing, and heterogeneous catalysis, where hindered mass transport is either essential to the process or a necessary but undesirable limitation. Unfortunately, there are currently no universal models capable of predicting mass transport based on a description of the porous material because real porous materials are complex and because many coupled dynamic mechanisms (e.g., adsorption, steric effects, hydrodynamic effects, electrostatic interactions, etc.) give rise to the observed macroscopic transport phenomena.While classical techniques, like nuclear magnetic resonance and dynamic light scattering, provide useful information about mass transport in porous media at the ensemble level, they provide limited insight into the microscopic mechanisms that give rise to complex phenomena such as anomalous diffusion, hindered pore-space accessibility, and unexpected retention under flow, among many others. To address this issue, we have developed refractive index matching imaging systems, combined with single-particle tracking methods, allowing the direct visualization of single-particle motion within a variety of porous materials.In this Account, we summarize our recent efforts to advance the understanding of nanoparticle transport in porous media using single-particle tracking methods in both fundamental and applied scenarios. First, we describe the basic principles for two-dimensional and three-dimensional single-particle tracking in porous materials. Then, we provide concrete examples of nanoparticle transport in porous materials from two perspectives: (1) understanding fundamental elementary particle transport processes in porous media, including pore accessibility and cavity escape, which limit transport in porous media, and (2) facilitating applications in industrial processes, e.g., by understanding the mechanisms of particle fouling and remobilization in filtration membranes. Finally, we provide an outlook of opportunities associated with investigating other types of mass transport in confined environments using single-particle tracking methods, including electrophoretic and self-propelled motion.
从颗粒状和破碎的地下环境到用于药物提纯的高度工程化聚合物膜,多孔材料在自然界和工业应用中无处不在。特别是,多孔介质广泛应用于包括水处理、药物灭菌、食品/饮料加工和多相催化在内的过程中,其中受阻的传质对于过程来说是必不可少的,或者是必要但不期望的限制。不幸的是,目前没有能够基于多孔材料描述来预测传质的通用模型,因为实际的多孔材料是复杂的,并且许多耦合的动态机制(例如,吸附、空间位阻效应、流体动力学效应、静电相互作用等)导致了所观察到的宏观传输现象。虽然像核磁共振和动态光散射这样的经典技术在整体水平上提供了有关多孔介质中传质的有用信息,但它们对导致复杂现象(如异常扩散、受限的孔空间可及性和流动下的意外保留等)的微观机制提供的见解有限。为了解决这个问题,我们开发了折射率匹配成像系统,结合单粒子跟踪方法,允许在各种多孔材料中直接可视化单粒子的运动。在本报告中,我们总结了我们最近使用单粒子跟踪方法在基础和应用场景中推进对多孔介质中纳米颗粒传输的理解的努力。首先,我们描述了在多孔材料中进行二维和三维单粒子跟踪的基本原理。然后,我们从两个角度提供了多孔材料中纳米颗粒传输的具体实例:(1)了解多孔介质中基本的单个粒子传输过程,包括限制多孔介质中传输的孔可及性和腔室逃逸,以及(2)促进工业过程中的应用,例如通过理解过滤膜中颗粒污垢和再悬浮的机制。最后,我们提供了使用单粒子跟踪方法研究受限环境中其他类型传质的机会的展望,包括电泳和自推进运动。