Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany;
MALDI Imaging Lab, University of Bremen, 28334 Bremen, Germany.
Proc Natl Acad Sci U S A. 2021 Jul 6;118(27). doi: 10.1073/pnas.2023773118.
Our understanding of metabolic interactions between small symbiotic animals and bacteria or parasitic eukaryotes that reside within their bodies is extremely limited. This gap in knowledge originates from a methodological challenge, namely to connect histological changes in host tissues induced by beneficial and parasitic (micro)organisms to the underlying metabolites. We addressed this challenge and developed chemo-histo-tomography (CHEMHIST), a culture-independent approach to connect anatomic structure and metabolic function in millimeter-sized symbiotic animals. CHEMHIST combines chemical imaging of metabolites based on mass spectrometry imaging (MSI) and microanatomy-based micro-computed X-ray tomography (micro-CT) on the same animal. Both high-resolution MSI and micro-CT allowed us to correlate the distribution of metabolites to the same animal's three-dimensional (3D) histology down to submicrometer resolutions. Our protocol is compatible with tissue-specific DNA sequencing and fluorescence in situ hybridization for the taxonomic identification and localization of the associated micro(organisms). Building CHEMHIST upon in situ imaging, we sampled an earthworm from its natural habitat and created an interactive 3D model of its physical and chemical interactions with bacteria and parasitic nematodes in its tissues. Combining MSI and micro-CT, we present a methodological groundwork for connecting metabolic and anatomic phenotypes of small symbiotic animals that often represent keystone species for ecosystem functioning.
我们对小型共生动物与其体内细菌或寄生真核生物之间代谢相互作用的理解极其有限。这种知识上的差距源于一个方法学上的挑战,即需要将宿主组织中由有益和寄生(微生物)引起的组织学变化与潜在代谢物联系起来。我们解决了这一挑战,并开发了 chemo-histo-tomography(CHEMHIST),这是一种独立于培养的方法,可以将毫米级共生动物的解剖结构和代谢功能联系起来。CHEMHIST 将基于质谱成像(MSI)的代谢物化学成像与基于微解剖的微计算机断层扫描(micro-CT)相结合,应用于同一动物。高分辨率 MSI 和 micro-CT 使我们能够将代谢物的分布与同一动物的三维(3D)组织学相关联,分辨率达到亚微米级。我们的方案与组织特异性 DNA 测序和荧光原位杂交兼容,可用于相关微生物的分类鉴定和定位。我们基于原位成像构建了 CHEMHIST,从其自然栖息地中采集了一条蚯蚓,并创建了一个交互式 3D 模型,展示了其与组织中细菌和寄生线虫的物理和化学相互作用。通过结合 MSI 和 micro-CT,我们为连接小型共生动物的代谢和解剖表型提供了一种方法学基础,这些动物通常是生态系统功能的关键物种。