Laboratory of Molecular Microbiology and Biotechnology, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, ed. 16, 90128, Palermo, Italy.
Laboratory of Microbiology and Biologic Assays, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi, 32, 90123, Palermo, Italy.
Appl Microbiol Biotechnol. 2021 Jul;105(13):5357-5366. doi: 10.1007/s00253-021-11418-4. Epub 2021 Jun 29.
The widespread use of antibiotics has resulted in the outbreak and spread of antibiotic-resistant pathogens. Bacterial antibiotic resistance may develop at cellular and community levels. In the latter case, it is based on tolerance which implicates the shift from a free-living form of life (i.e., planktonic) to a sessile multi-stratified community (i.e., biofilm). Metal nanoparticles (MNPs) have been shown to be promising candidates as antimicrobial agents. MNPs are able to interact with and penetrate bacterial biofilms, thus, resulting effective antibiofilm compounds. Another interesting aspect is the possibility of using plants, fungi, yeasts, and bacteria to obtain biogenic MNPs (BMNP). Bacteria are able to grow in presence of many different toxic heavy metal ions thanks to different metal resistance gene clusters that allow a variety of biochemical counters (formation of harmless complexes, efflux, precipitation, reduction, etc.). The formation of BMNPs by bacterial cells could be, in most cases, just a consequence of metal detoxification mechanisms. This review focuses on BMNPs from bacterial origin that may represent a good source of compounds with a broad spectrum of activity against common Gram-positive and Gram-negative pathogens and bacterial biofilms thereof. In particular, the state of art on BMNP synthesis by bacteria is presented and potential applications in the fight against biofilm-associated infections and resistant pathogens are highlighted. In addition, critical aspects on BMNP bacterial synthesis and utilization are commented.Key points• New antimicrobials to fight antibiotic-resistant pathogens are urgently needed.• Biogenic metal nanoparticles can efficiently hit biofilm-forming pathogens.• Metal-nanoparticle composition could confer specific antibiofilm activity.
抗生素的广泛使用导致了抗生素耐药病原体的爆发和传播。细菌的抗生素耐药性可能在细胞和群落水平上发展。在后一种情况下,它基于耐受性,这意味着从自由生活形式(即浮游生物)向多分层群落(即生物膜)的转变。金属纳米颗粒(MNPs)已被证明是有前途的抗菌剂候选物。MNPs 能够与细菌生物膜相互作用并穿透生物膜,从而成为有效的抗生物膜化合物。另一个有趣的方面是使用植物、真菌、酵母和细菌来获得生物源 MNPs(BMNP)的可能性。由于不同的金属抗性基因簇,细菌能够在存在许多不同毒性重金属离子的情况下生长,这些基因簇允许各种生化计数器(形成无害复合物、外排、沉淀、还原等)。细菌细胞形成 BMNPs 在大多数情况下可能只是金属解毒机制的结果。本综述重点介绍了源自细菌的 BMNPs,这些 BMNPs 可能是针对常见革兰氏阳性和革兰氏阴性病原体及其生物膜的具有广谱活性的化合物的良好来源。特别介绍了细菌合成 BMNP 的最新技术,并强调了其在对抗生物膜相关感染和耐药病原体方面的潜在应用。此外,还对 BMNP 细菌合成和利用的关键方面进行了评论。
关键点
• 急需新型抗生素来对抗抗药性病原体。
• 生物源金属纳米颗粒可以有效地对抗形成生物膜的病原体。
• 金属纳米颗粒的组成可以赋予特定的抗生物膜活性。