Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
Laboratory for MEMS Applications, IMTEK, Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany.
ACS Nano. 2021 Jul 27;15(7):12161-12170. doi: 10.1021/acsnano.1c03677. Epub 2021 Jun 29.
The precise spatial localization of proteins by super-resolution microscopy (SRM) demands their targeted labeling. Positioning reporter molecules as close as possible to the target remains a challenge in primary cells or tissues from patients that cannot be easily genetically modified. Indirect immunolabeling introduces relatively large linkage errors, whereas site-specific and stoichiometric labeling of primary antibodies relies on elaborate chemistries. In this study, we developed a simple two-step protocol to site-specifically attach reporters such as fluorophores or DNA handles to several immunoglobulin G (IgG) antibodies from different animal species and benchmarked the performance of these conjugates for 3D STORM (stochastic optical reconstruction microscopy) and DNA-PAINT (point accumulation in nanoscale topography). Glutamine labeling was restricted to two sites per IgG and saturable by exploiting microbial transglutaminase after removal of N-linked glycans. Precision measurements of 3D microtubule labeling shell dimensions in cell lines and human platelets showed that linkage errors from primary and secondary antibodies did not add up. Monte Carlo simulations of a geometric microtubule-IgG model were in quantitative agreement with STORM results. The simulations revealed that the flexible hinge between Fab and Fc segments effectively randomized the direction of the secondary antibody, while the restricted binding orientation of the primary antibody's Fab fragment accounted for most of the systematic offset between the reporter and α-tubulin. DNA-PAINT surprisingly yielded larger linkage errors than STORM, indicating unphysiological conformations of DNA-labeled IgGs. In summary, our cost-effective protocol for generating well-characterized primary IgG conjugates offers an easy route to precise SRM measurements in arbitrary fixed samples.
通过超分辨率显微镜(SRM)精确定位蛋白质需要对其进行靶向标记。在无法进行基因修饰的原代细胞或组织中,将报告分子尽可能靠近靶标定位仍然是一个挑战。间接免疫标记会引入相对较大的连接误差,而原位和化学计量标记的主要抗体依赖于精细的化学。在这项研究中,我们开发了一种简单的两步方案,用于将报告分子(如荧光团或 DNA 手柄)特异性地附着到来自不同动物物种的几种免疫球蛋白 G(IgG)抗体上,并对这些缀合物在 3D STORM(随机光学重建显微镜)和 DNA-PAINT(点在纳米形貌中的积累)中的性能进行基准测试。谷氨酰胺标记受到限制,每个 IgG 有两个位点,通过在去除 N-连接聚糖后利用微生物转谷氨酰胺酶来实现饱和。在细胞系和人血小板中对 3D 微管标记壳尺寸的精确测量表明,来自初级和次级抗体的连接误差并没有加起来。基于几何微管-IgG 模型的蒙特卡罗模拟与 STORM 结果具有定量一致性。该模拟揭示了 Fab 和 Fc 片段之间的柔性铰链有效地随机化了二级抗体的方向,而初级抗体 Fab 片段的受限结合方向解释了报告分子和 α-微管蛋白之间的大部分系统偏移。DNA-PAINT 出人意料地产生了比 STORM 更大的连接误差,这表明 DNA 标记的 IgGs 存在非生理构象。总之,我们生成经过良好表征的初级 IgG 缀合物的这种具有成本效益的方案为在任意固定样品中进行精确的 SRM 测量提供了一种简单的途径。