Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary.
Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
Bioinformatics. 2021 Dec 7;37(23):4328-4335. doi: 10.1093/bioinformatics/btab480.
Cell polarity refers to the asymmetric organization of cellular components in various cells. Epithelial cells are the best-known examples of polarized cells, featuring apical and basolateral membrane domains. Mounting evidence suggests that short linear motifs play a major role in protein trafficking to these domains, although the exact rules governing them are still elusive.
In this study we prepared neural networks that capture recurrent patterns to classify transmembrane proteins localizing into apical and basolateral membranes. Asymmetric expression of drug transporters results in vectorial drug transport, governing the pharmacokinetics of numerous substances, yet the data on how proteins are sorted in epithelial cells is very scattered. The provided method may offer help to experimentalists to identify or better characterize molecular networks regulating the distribution of transporters or surface receptors (including viral entry receptors like that of COVID-19).
The prediction server PolarProtPred is available at http://polarprotpred.ttk.hu.
Supplementary data are available at Bioinformatics online.
细胞极性是指各种细胞中细胞成分的不对称组织。上皮细胞是极性细胞的最佳范例,具有顶端和基底外侧膜域。越来越多的证据表明,短线性基序在这些区域的蛋白质运输中起着主要作用,尽管控制它们的精确规则仍难以捉摸。
在这项研究中,我们制备了捕获周期性模式的神经网络,以对定位于顶端和基底外侧膜的跨膜蛋白进行分类。药物转运蛋白的不对称表达导致载体药物转运,从而控制许多物质的药代动力学,然而关于蛋白质在上皮细胞中如何分拣的信息非常分散。所提供的方法可以为实验人员提供帮助,以识别或更好地描述调节转运蛋白或表面受体(包括 COVID-19 等病毒进入受体)分布的分子网络。
预测服务器 PolarProtPred 可在 http://polarprotpred.ttk.hu 上获得。
补充数据可在 Bioinformatics 在线获得。