Centro de Biotecnologıa y Genomica de Plantas (Universidad Politecnica de Madrid-Instituto Nacional de Investigacion y Tecnologıa Agraria y Alimentaria), Pozuelo de Alarcon, Spain.
Nat Commun. 2021 Jun 29;12(1):4017. doi: 10.1038/s41467-021-24325-z.
The synchronization is a recurring phenomenon in neuroscience, ecology, human sciences, and biology. However, controlling synchronization in complex eukaryotic consortia on extended spatial-temporal scales remains a major challenge. Here, to address this issue we construct a minimal synthetic system that directly converts chemical signals into a coherent gene expression synchronized among eukaryotic communities through rate-dependent hysteresis. Guided by chemical rhythms, isolated colonies of yeast Saccharomyces cerevisiae oscillate in near-perfect synchrony despite the absence of intercellular coupling or intrinsic oscillations. Increased speed of chemical rhythms and incorporation of feedback in the system architecture can tune synchronization and precision of the cell responses in a growing cell collectives. This synchronization mechanism remain robust under stress in the two-strain consortia composed of toxin-sensitive and toxin-producing strains. The sensitive cells can maintain the spatial-temporal synchronization for extended periods under the rhythmic toxin dosages produced by killer cells. Our study provides a simple molecular framework for generating global coordination of eukaryotic gene expression through dynamic environment.
同步是神经科学、生态学、人类科学和生物学中反复出现的现象。然而,在复杂的真核生物联合体上控制扩展时空尺度的同步仍然是一个主要挑战。在这里,为了解决这个问题,我们构建了一个最小的合成系统,该系统通过依赖于速率的滞后直接将化学信号转换为真核生物群落之间相干的基因表达同步。在化学节律的指导下,尽管不存在细胞间耦合或固有振荡,孤立的酵母酿酒酵母(Saccharomyces cerevisiae)菌落仍能近乎完美地同步振荡。化学节律的速度加快和系统结构中反馈的加入可以调整细胞反应的同步性和精度在不断增长的细胞群体中。在由毒素敏感和毒素产生菌株组成的两菌株联合体中,这种同步机制在应激下仍然具有很强的鲁棒性。在杀伤细胞产生的节律性毒素剂量下,敏感细胞可以在很长一段时间内保持时空同步。我们的研究为通过动态环境产生真核生物基因表达的全局协调提供了一个简单的分子框架。