School of Physics, University of Sydney, Sydney, NSW, Australia.
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan.
Nat Commun. 2021 Jun 29;12(1):4008. doi: 10.1038/s41467-021-24260-z.
The brain's efficient information processing is enabled by the interplay between its neuro-synaptic elements and complex network structure. This work reports on the neuromorphic dynamics of nanowire networks (NWNs), a unique brain-inspired system with synapse-like memristive junctions embedded within a recurrent neural network-like structure. Simulation and experiment elucidate how collective memristive switching gives rise to long-range transport pathways, drastically altering the network's global state via a discontinuous phase transition. The spatio-temporal properties of switching dynamics are found to be consistent with avalanches displaying power-law size and life-time distributions, with exponents obeying the crackling noise relationship, thus satisfying criteria for criticality, as observed in cortical neuronal cultures. Furthermore, NWNs adaptively respond to time varying stimuli, exhibiting diverse dynamics tunable from order to chaos. Dynamical states at the edge-of-chaos are found to optimise information processing for increasingly complex learning tasks. Overall, these results reveal a rich repertoire of emergent, collective neural-like dynamics in NWNs, thus demonstrating the potential for a neuromorphic advantage in information processing.
大脑的高效信息处理是通过其神经突触元件和复杂网络结构之间的相互作用实现的。这项工作报告了纳维网(NWN)的神经形态动力学,这是一个独特的类脑系统,具有嵌入在类似于递归神经网络结构中的突触样忆阻结。模拟和实验阐明了集体忆阻开关如何产生远程传输路径,通过不连续的相变剧烈改变网络的全局状态。开关动力学的时空特性被发现与显示幂律大小和寿命分布的雪崩一致,指数服从噼啪噪声关系,从而满足皮质神经元培养中观察到的临界标准。此外,NWN 自适应地响应时变刺激,表现出从有序到混沌的多种可调动态。在混沌边缘的动态状态被发现为日益复杂的学习任务优化信息处理。总的来说,这些结果揭示了 NWN 中涌现的丰富的集体类神经动力学,从而展示了在信息处理中神经形态优势的潜力。