Suppr超能文献

原子尺度动力学驱动渗透纳米结构网络中的类脑雪崩。

Atomic Scale Dynamics Drive Brain-like Avalanches in Percolating Nanostructured Networks.

机构信息

Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.

The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, Te Kura Matu̅, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.

出版信息

Nano Lett. 2020 May 13;20(5):3935-3942. doi: 10.1021/acs.nanolett.0c01096. Epub 2020 May 4.

Abstract

Self-assembled networks of nanoparticles and nanowires have recently emerged as promising systems for brain-like computation. Here, we focus on percolating networks of nanoparticles which exhibit brain-like dynamics. We use a combination of experiments and simulations to show that the brain-like network dynamics emerge from atomic-scale switching dynamics inside tunnel gaps that are distributed throughout the network. The atomic-scale dynamics emulate leaky integrate and fire (LIF) mechanisms in biological neurons, leading to the generation of critical avalanches of signals. These avalanches are quantitatively the same as those observed in cortical tissue and are signatures of the correlations that are required for computation. We show that the avalanches are associated with dynamical restructuring of the networks which self-tune to balanced states consistent with self-organized criticality. Our simulations allow visualization of the network states and detailed mechanisms of signal propagation.

摘要

自组装的纳米粒子和纳米线网络最近作为类脑计算的有前途的系统出现。在这里,我们专注于表现出类脑动力学的纳米粒子的渗透网络。我们使用实验和模拟的组合来表明,类脑网络动力学源自分布在整个网络中的隧道间隙内的原子级开关动力学。原子级动力学模拟生物神经元中的漏积分和触发 (LIF) 机制,导致信号的关键雪崩的产生。这些雪崩与在皮质组织中观察到的相同,是计算所需相关性的特征。我们表明,雪崩与网络的动态重构相关联,该网络自调整到与自组织临界性一致的平衡状态。我们的模拟允许可视化网络状态和信号传播的详细机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验