Suppr超能文献

通过离子门控操纵的具有混沌自旋波干涉的离子-磁子储能计算

Iono-Magnonic Reservoir Computing With Chaotic Spin Wave Interference Manipulated by Ion-Gating.

作者信息

Namiki Wataru, Nishioka Daiki, Nomura Yuki, Tsuchiya Takashi, Yamamoto Kazuo, Terabe Kazuya

机构信息

Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.

Faculty of Science, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan.

出版信息

Adv Sci (Weinh). 2025 Jan;12(3):e2411777. doi: 10.1002/advs.202411777. Epub 2024 Nov 17.

Abstract

Physical reservoirs are a promising approach for realizing high-performance artificial intelligence devices utilizing physical devices. Although nonlinear interfered spin-wave multi-detection exhibits high nonlinearity and the ability to map in high dimensional feature space, it does not have sufficient performance to process time-series data precisely. Herein, development of an iono-magnonic reservoir by combining such interfered spin wave multi-detection and ion-gating involving protonation-induced redox reaction triggered by the application of voltage is reported. This study is the first to report the manipulation of the propagating spin wave property by ion-gating and the application of the same to physical reservoir computing. The subject iono-magnonic reservoir can generate various reservoir states in a single homogenous medium by utilizing a spin wave property modulated by ion-gating. Utilizing the strong nonlinearity resulting from chaos, the reservoir shows good computational performance in completing the Mackey-Glass chaotic time-series prediction task, and the performance is comparable to that exhibited by simulated neural networks.

摘要

物理储能器是利用物理设备实现高性能人工智能设备的一种很有前景的方法。尽管非线性干涉自旋波多检测表现出高非线性以及在高维特征空间中进行映射的能力,但它在精确处理时间序列数据方面的性能还不够。在此,报道了通过结合这种干涉自旋波多检测和涉及由电压施加触发的质子化诱导氧化还原反应的离子门控来开发一种离子磁振储能器。本研究首次报道了通过离子门控对传播自旋波特性的操纵及其在物理储能器计算中的应用。所研究的离子磁振储能器可以通过利用由离子门控调制的自旋波特性在单一均匀介质中产生各种储能器状态。利用由混沌产生的强非线性,该储能器在完成麦基 - 格拉斯混沌时间序列预测任务时表现出良好的计算性能,并且该性能与模拟神经网络所表现出的性能相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d098/11744637/d9c10f558e0e/ADVS-12-2411777-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验