Suppr超能文献

使用人工神经网络和模糊区间数学建模对新冠肺炎患者健康状况进行实时预测。

Real-time prediction of COVID-19 patients health situations using Artificial Neural Networks and Fuzzy Interval Mathematical modeling.

作者信息

Elleuch Mohamed Ali, Hassena Amal Ben, Abdelhedi Mohamed, Pinto Francisco Silva

机构信息

Optimization, Logistics and Informatics Decisions Research Laboratory (OLID), Higher Institute of Industrial Management of Sfax, University of Sfax, BP-2021, Sfax, Tunisia.

Toxicology Environmental Microbiology and Health Research Laboratory (LR17ES06), Faculty of Sciences of Sfax, University of Sfax, BP-3038, Tunisia.

出版信息

Appl Soft Comput. 2021 Oct;110:107643. doi: 10.1016/j.asoc.2021.107643. Epub 2021 Jun 24.

Abstract

At the end of 2019, the SARS-CoV-2 virus caused an outbreak of COVID-19 disease. The spread of this once-in-a-century pathogen increases demand for appropriate medical care, which strains the capacity and resources of hospitals in a critical way. Given the limited time available to prepare for the required demand, health care administrators fear they will not be ready to face patient's influx. To aid health managers with the Prioritization and Scheduling COVID-19 Patients problem, a tool based on Artificial Intelligence (AI) through the Artificial Neural Networks (ANN) method, and Operations Research (OR) through a Fuzzy Interval Mathematical model was developed. The results indicated that combining both models provides an effective assessment under scarce initial information to select a suitable list of patients for a set of hospitals. The proposed approach allows to achieve a key goal: minimizing death rates under each hospital constraints of available resources. Furthermore, there is a serious concern regarding the resurgence of the COVID-19 virus which could cause a more severe pandemic. Thus, the main outcome of this study is the application of the above-mentioned approaches, especially when combining them, as efficient tools serving health establishments to manage critical resources.

摘要

2019年底,严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引发了新型冠状病毒肺炎(COVID-19)疫情。这种百年一遇病原体的传播增加了对适当医疗护理的需求,给医院的能力和资源带来了极大压力。鉴于为应对所需需求准备的时间有限,医疗保健管理人员担心他们没有准备好应对患者涌入的情况。为了帮助卫生管理人员解决COVID-19患者的优先级排序和调度问题,开发了一种基于人工智能(AI)的人工神经网络(ANN)方法以及基于运筹学(OR)的模糊区间数学模型的工具。结果表明,将这两种模型结合起来,可以在初始信息稀缺的情况下进行有效评估,为一组医院选择合适的患者名单。所提出的方法能够实现一个关键目标:在每家医院可用资源的限制下将死亡率降至最低。此外,人们严重担心COVID-19病毒的卷土重来可能导致更严重的大流行。因此,本研究的主要成果是应用上述方法,特别是将它们结合起来,作为为卫生机构管理关键资源的有效工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a83/8225317/1b774b27766d/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验