School of Politics and Public Administration, Zhenghzhou University, Zhengzhou, China.
Front Public Health. 2022 May 4;10:901294. doi: 10.3389/fpubh.2022.901294. eCollection 2022.
Since December 2019, the pandemic COVID-19 has been connected to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Early identification and diagnosis are essential goals for health practitioners because early symptoms correlate with those of other common illnesses including the common cold and flu. RT-PCR is frequently used to identify SARS-CoV-2 viral infection. Although this procedure can take up to 2 days to complete and sequential monitoring may be essential to figure out the potential of false-negative findings, RT-PCR test kits are apparently in low availability, highlighting the urgent need for more efficient methods of diagnosing COVID-19 patients. Artificial intelligence (AI)-based healthcare models are more effective at diagnosing and controlling large groups of people. Hence, this paper proposes a novel AI-enabled SARS detection framework. Here, the input CT images are collected and preprocessed using a block-matching filter and histogram equalization (HE). Segmentation is performed using Compact Entropy Rate Superpixel (CERS) technique. Features of segmented output are extracted using Histogram of Gradient (HOG). Feature selection is done using Principal Component Analysis (PCA). The suggested Random Sigmoidal Artificial Neural Networks (RS-ANN) based classification approach effectively diagnoses the existence of the disease. The performance of the suggested Artificial intelligence model is analyzed and related to existing approaches. The suggested AI system may help identify COVID-19 patients more quickly than conventional approaches.
自 2019 年 12 月以来,大流行 COVID-19 与严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)有关。早期识别和诊断是卫生工作者的重要目标,因为早期症状与其他常见疾病(包括普通感冒和流感)的症状相关。RT-PCR 常用于识别 SARS-CoV-2 病毒感染。虽然该程序可能需要长达 2 天才能完成,并且连续监测对于确定潜在的假阴性结果可能很重要,但 RT-PCR 测试试剂盒显然供应不足,这凸显了迫切需要更有效的 COVID-19 患者诊断方法。基于人工智能(AI)的医疗保健模型在诊断和控制大量人群方面更有效。因此,本文提出了一种新颖的基于 AI 的 SARS 检测框架。在这里,使用块匹配滤波器和直方图均衡化(HE)收集和预处理输入 CT 图像。使用紧凑熵率超像素(CERS)技术进行分割。使用梯度直方图(HOG)提取分割输出的特征。使用主成分分析(PCA)进行特征选择。建议的基于随机 Sigmoidal 人工神经网络(RS-ANN)的分类方法可有效诊断疾病的存在。分析了建议的人工智能模型的性能,并与现有方法进行了比较。与传统方法相比,建议的人工智能系统可能有助于更快地识别 COVID-19 患者。