Yang Cha Yu, Wang Jin
Department of Mathematics, University of Tennessee at Chattanooga, 615 McCallie Ave., Chattanooga, TN 37403, USA.
Math Biosci Eng. 2020 Mar 11;17(3):2708-2724. doi: 10.3934/mbe.2020148.
We propose a mathematical model to investigate the current outbreak of the coronavirus disease 2019 (COVID-19) in Wuhan, China. Our model describes the multiple transmission pathways in the infection dynamics, and emphasizes the role of the environmental reservoir in the transmission and spread of this disease. Our model also employs non-constant transmission rates which change with the epidemiological status and environmental conditions and which reflect the impact of the on-going disease control measures. We conduct a detailed analysis of this model, and demonstrate its application using publicly reported data. Among other findings, our analytical and numerical results indicate that the coronavirus infection would remain endemic, which necessitates long-term disease prevention and intervention programs.
我们提出了一个数学模型,以研究中国武汉目前爆发的2019年冠状病毒病(COVID-19)。我们的模型描述了感染动态中的多种传播途径,并强调了环境宿主在该疾病传播和扩散中的作用。我们的模型还采用了随流行病学状况和环境条件变化的非恒定传播率,这些传播率反映了正在实施的疾病控制措施的影响。我们对该模型进行了详细分析,并使用公开报告的数据展示了其应用。在其他发现中,我们的分析和数值结果表明,冠状病毒感染将持续存在,这需要长期的疾病预防和干预计划。