Suppr超能文献

磁等离子体纳米粒子的磁靶向及其对BALB/C小鼠CT26肿瘤近红外激光照射温度分布的影响。

Magnetic Targeting of Magneto-Plasmonic Nanoparticles and Their Effects on Temperature Profile of NIR Laser Irradiated to CT26 Tumor in BALB/C Mice.

作者信息

Abed Ziaeddin, Shakeri-Zadeh Ali, Eyvazzadeh Nazila

机构信息

MSc, Radiation Research Center, Allied Medical Sciences School, AJA University of Medical Sciences, Tehran, Iran.

PhD, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.

出版信息

J Biomed Phys Eng. 2021 Jun 1;11(3):281-288. doi: 10.31661/jbpe.v0i0.1032. eCollection 2021 Jun.

Abstract

BACKGROUND

Photothermal therapy (PTT) is a promising method in the field of cancer hyperthermia. In this method, interaction between laser light and photosensitizer material, such as plasmonic nanoparticles, leads into a localized heating. Recent efforts in the area of PTT aim to exploit targeting strategies for preferential accumulation of plasmonic nanoparticles within the tumor.

OBJECTIVE

To investigate the impact of magneto-plasmonic (Au@FeO) nanoparticles on temperature profile of CT26 tumor, bearing mice were irradiated by NIR laser.

MATERIAL AND METHODS

In this in vivo study, Au@FeO NPs were injected intraperitoneally to Balb/c mice bearing CT26 colorectal tumor. Immediately after injection, a magnet (magnetic field strength of 0.4 Tesla) was placed on the tumor site for 6 hours in order to concentrate nanoparticles inside the tumor. In the next step, the tumors were exposed with NIR laser source (808 nm; 2 W/cm; 5 min).

RESULTS

Tumor temperature without magnetic targeting increased ~7 ± 0.9 °C after NIR irradiation, whereas the tumors in magnetic targeted group experienced a temperature rise of ~12 ± 1.4 °C.

CONCLUSION

It is concluded that Au@FeO nanoparticle is a good candidate for therapeutic nanostructure in cancer photothermal therapy.

摘要

背景

光热疗法(PTT)是癌症热疗领域一种很有前景的方法。在这种方法中,激光与诸如等离子体纳米颗粒等光敏剂材料之间的相互作用会导致局部加热。PTT领域最近的努力旨在开发靶向策略,使等离子体纳米颗粒优先在肿瘤内积累。

目的

为了研究磁等离子体(Au@FeO)纳米颗粒对CT26荷瘤小鼠肿瘤温度分布的影响,用近红外激光照射小鼠。

材料与方法

在这项体内研究中,将Au@FeO纳米颗粒腹腔注射到荷CT26结直肠癌的Balb/c小鼠体内。注射后立即在肿瘤部位放置一块磁铁(磁场强度为0.4特斯拉)6小时,以便将纳米颗粒集中在肿瘤内部。下一步,用近红外激光源(808纳米;2瓦/平方厘米;5分钟)照射肿瘤。

结果

近红外照射后,无磁靶向的肿瘤温度升高约7±0.9℃,而磁靶向组的肿瘤温度升高约12±1.4℃。

结论

得出结论,Au@FeO纳米颗粒是癌症光热疗法中治疗性纳米结构的良好候选材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6ed/8236099/0f99ef9df74a/JBPE-11-281-g001.jpg

相似文献

2
Iron oxide-gold core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance.
J Cancer Res Clin Oncol. 2019 May;145(5):1213-1219. doi: 10.1007/s00432-019-02870-x. Epub 2019 Mar 7.
3
Selective heat generation in cancer cells using a combination of 808 nm laser irradiation and the folate-conjugated FeO@Au nanocomplex.
Artif Cells Nanomed Biotechnol. 2018;46(sup1):241-253. doi: 10.1080/21691401.2017.1420072. Epub 2018 Jan 1.
4
Targeted Photothermal Therapy of Melanoma in C57BL/6 Mice using FeO@Au Core-shell Nanoparticles and Near-infrared Laser.
J Biomed Phys Eng. 2021 Feb 1;11(1):29-38. doi: 10.31661/jbpe.v0i0.736. eCollection 2021 Feb.
6
8
Multifunctional Hybrid Fe2O3-Au Nanoparticles for Efficient Plasmonic Heating.
J Vis Exp. 2016 Feb 20(108):53598. doi: 10.3791/53598.
9
3D modeling of in vivo MRI-guided nano-photothermal therapy mediated by magneto-plasmonic nanohybrids.
Biomed Eng Online. 2023 Aug 1;22(1):77. doi: 10.1186/s12938-023-01131-w.

引用本文的文献

1
The Role of Inorganic Nanomaterials in Overcoming Challenges in Colorectal Cancer Diagnosis and Therapy.
Pharmaceutics. 2025 Mar 25;17(4):409. doi: 10.3390/pharmaceutics17040409.
2
Application of Nanoparticles in the Diagnosis and Treatment of Colorectal Cancer.
Anticancer Agents Med Chem. 2024;24(18):1305-1326. doi: 10.2174/0118715206323900240807110122.
3

本文引用的文献

1
Multimodal cancer cell therapy using Au@FeO core-shell nanoparticles in combination with photo-thermo-radiotherapy.
Photodiagnosis Photodyn Ther. 2018 Dec;24:129-135. doi: 10.1016/j.pdpdt.2018.08.003. Epub 2018 Aug 2.
2
Selective heat generation in cancer cells using a combination of 808 nm laser irradiation and the folate-conjugated FeO@Au nanocomplex.
Artif Cells Nanomed Biotechnol. 2018;46(sup1):241-253. doi: 10.1080/21691401.2017.1420072. Epub 2018 Jan 1.
3
Cancer Statistics, 2017.
CA Cancer J Clin. 2017 Jan;67(1):7-30. doi: 10.3322/caac.21387. Epub 2017 Jan 5.
4
Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications.
J Control Release. 2016 Aug 10;235:205-221. doi: 10.1016/j.jconrel.2016.05.062. Epub 2016 Jun 3.
5
Current investigations into magnetic nanoparticles for biomedical applications.
J Biomed Mater Res A. 2016 May;104(5):1285-96. doi: 10.1002/jbm.a.35654. Epub 2016 Feb 2.
7
8
Nanoparticles for photothermal therapies.
Nanoscale. 2014 Aug 21;6(16):9494-530. doi: 10.1039/c4nr00708e.
9
Magnetic nanoparticle-based hyperthermia for cancer treatment.
Rep Pract Oncol Radiother. 2013 Nov 1;18(6):397-400. doi: 10.1016/j.rpor.2013.09.011.
10
Tumor selective hyperthermia induced by short-wave capacitively-coupled RF electric-fields.
PLoS One. 2013 Jul 4;8(7):e68506. doi: 10.1371/journal.pone.0068506. Print 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验