Suppr超能文献

基于磁等离子体纳米杂化的体内 MRI 引导的纳米光热治疗的 3D 建模。

3D modeling of in vivo MRI-guided nano-photothermal therapy mediated by magneto-plasmonic nanohybrids.

机构信息

Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.

Medical Physics Department, Iran University of Medical Sciences, Tehran, Iran.

出版信息

Biomed Eng Online. 2023 Aug 1;22(1):77. doi: 10.1186/s12938-023-01131-w.

Abstract

BACKGROUND

Nano-photothermal therapy (NPTT) has gained wide attention in cancer treatment due to its high efficiency and selective treatment strategy. The biggest challenges in the clinical application are the lack of (i) a reliable platform for mapping the thermal dose and (ii) efficient photothermal agents (PTAs). This study developed a 3D treatment planning for NPTT to reduce the uncertainty of treatment procedures, based on our synthesized nanohybrid.

METHODS

This study aimed to develop a three-dimensional finite element method (FEM) model for in vivo NPTT in mice using magneto-plasmonic nanohybrids, which are complex assemblies of superparamagnetic iron oxide nanoparticles and gold nanorods. The model was based on Pennes' bio-heat equation and utilized a geometrically correct mice whole-body. CT26 colon tumor-bearing BALB/c mice were injected with nanohybrids and imaged using MRI (3 Tesla) before and after injection. MR images were segmented, and STereoLithography (STL) files of mice bodies and nanohybrid distribution in the tumor were established to create a realistic geometry for the model. The accuracy of the temperature predictions was validated by using an infrared (IR) camera.

RESULTS

The photothermal conversion efficiency of the nanohybrids was experimentally determined to be approximately 30%. The intratumoral (IT) injection group showed the highest temperature increase, with a maximum of 17 °C observed at the hottest point on the surface of the tumor-bearing mice for 300 s of laser exposure at a power density of 1.4 W/cm. Furthermore, the highest level of tissue damage, with a maximum value of Ω = 0.4, was observed in the IT injection group, as determined through a simulation study.

CONCLUSIONS

Our synthesized nanohybrid shows potential as an effective agent for MRI-guided NPTT. The developed model accurately predicted temperature distributions and tissue damage in the tumor. However, the current temperature validation method, which relies on limited 2D measurements, may be too lenient. Further refinement is necessary to improve validation. Nevertheless, the presented FEM model holds great promise for clinical NPTT treatment planning.

摘要

背景

纳米光热疗法(NPTT)因其高效和选择性治疗策略在癌症治疗中受到广泛关注。其临床应用的最大挑战是缺乏(i)可靠的热剂量映射平台和(ii)高效的光热剂(PTAs)。本研究基于我们合成的纳米杂化物,开发了一种用于 NPTT 的三维治疗计划,以降低治疗过程的不确定性。

方法

本研究旨在使用磁等离子体纳米杂化物为小鼠体内的 NPTT 开发一个三维有限元方法(FEM)模型,该杂化物是超顺磁性氧化铁纳米粒子和金纳米棒的复杂组装体。该模型基于 Pennes 生物传热方程,并利用几何上正确的小鼠全身。CT26 结肠肿瘤荷瘤 BALB/c 小鼠在注射后进行 MRI(3 特斯拉)成像。对 MR 图像进行分割,并建立小鼠身体和肿瘤内纳米杂化物分布的立体光刻(STL)文件,为模型创建一个真实的几何形状。使用红外(IR)相机验证了温度预测的准确性。

结果

纳米杂化物的光热转换效率通过实验确定约为 30%。肿瘤内(IT)注射组显示出最高的温度升高,在激光照射 300 秒、功率密度为 1.4 W/cm 时,肿瘤表面最热点的最高温度升高了 17°C。此外,通过模拟研究观察到,在 IT 注射组中观察到最大的组织损伤,最大值为 Ω=0.4。

结论

我们合成的纳米杂化物显示出作为 MRI 引导的 NPTT 的有效试剂的潜力。所开发的模型准确预测了肿瘤内的温度分布和组织损伤。然而,目前依赖于有限的 2D 测量的温度验证方法可能过于宽松。需要进一步改进以提高验证的准确性。然而,所提出的 FEM 模型为临床 NPTT 治疗计划提供了很大的希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac70/10394893/db8b28b4b085/12938_2023_1131_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验