Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, 8010, Graz, Austria.
Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria.
Appl Microbiol Biotechnol. 2021 Jul;105(13):5383-5394. doi: 10.1007/s00253-021-11411-x. Epub 2021 Jun 30.
Advanced biotransformation processes typically involve the upstream processing part performed continuously and interlinked tightly with the product isolation. Key in their development is a catalyst that is highly active, operationally robust, conveniently produced, and recyclable. A promising strategy to obtain such catalyst is to encapsulate enzymes as permeabilized whole cells in porous polymer materials. Here, we show immobilization of the sucrose phosphorylase from Bifidobacterium adolescentis (P134Q-variant) by encapsulating the corresponding E. coli cells into polyacrylamide. Applying the solid catalyst, we demonstrate continuous production of the commercial extremolyte 2-α-D-glucosyl-glycerol (2-GG) from sucrose and glycerol. The solid catalyst exhibited similar activity (≥70%) as the cell-free extract (~800 U g cell wet weight) and showed excellent in-operando stability (40 °C) over 6 weeks in a packed-bed reactor. Systematic study of immobilization parameters related to catalyst activity led to the identification of cell loading and catalyst particle size as important factors of process optimization. Using glycerol in excess (1.8 M), we analyzed sucrose conversion dependent on space velocity (0.075-0.750 h) and revealed conditions for full conversion of up to 900 mM sucrose. The maximum 2-GG space-time yield reached was 45 g L h for a product concentration of 120 g L. Collectively, our study establishes a step-economic route towards a practical whole cell-derived solid catalyst of sucrose phosphorylase, enabling continuous production of glucosides from sucrose. This strengthens the current biomanufacturing of 2-GG, but also has significant replication potential for other sucrose-derived glucosides, promoting their industrial scale production using sucrose phosphorylase. KEY POINTS: • Cells of sucrose phosphorylase fixed in polyacrylamide were highly active and stable. • Solid catalyst was integrated with continuous flow to reach high process efficiency. • Generic process technology to efficiently produce glucosides from sucrose is shown.
高级生物转化过程通常涉及连续进行的上游处理部分,并与产物分离紧密结合。其发展的关键是一种具有高活性、操作稳健、方便生产和可回收的催化剂。获得这种催化剂的一种有前途的策略是将酶封装在多孔聚合物材料中作为通透性完整细胞。在这里,我们展示了通过将双歧杆菌(P134Q-变体)的蔗糖磷酸化酶的相应大肠杆菌细胞封装在聚丙烯酰胺中来固定化。应用固体催化剂,我们证明了从蔗糖和甘油连续生产商业极端盐 2-α-D-葡糖基甘油(2-GG)。固体催化剂表现出与无细胞提取物相似的活性(≥70%)(~800 U g 细胞湿重),并且在填充床反应器中 40°C 下超过 6 周表现出出色的在线稳定性。与催化剂活性相关的固定化参数的系统研究导致确定细胞负载和催化剂颗粒大小是过程优化的重要因素。使用过量的甘油(1.8 M),我们分析了依赖于空间速度(0.075-0.750 h)的蔗糖转化率,并揭示了高达 900 mM 蔗糖完全转化的条件。达到的最大 2-GG 时空产率为 45 g L h,产物浓度为 120 g L。总的来说,我们的研究建立了一种具有经济意义的实用蔗糖磷酸化酶全细胞衍生固体催化剂的路线,能够从蔗糖连续生产糖苷。这加强了当前的 2-GG 生物制造,但也为其他蔗糖衍生的糖苷的工业规模生产具有显著的复制潜力,通过蔗糖磷酸化酶促进它们的工业规模生产。要点: • 固定在聚丙烯酰胺中的蔗糖磷酸化酶细胞具有高活性和稳定性。 • 固体催化剂与连续流集成以达到高过程效率。 • 展示了从蔗糖高效生产糖苷的通用工艺技术。